知识图谱的应用
文章平均质量分 87
本专栏用于分享有关知识图谱在下游任务的应用,包括知识图谱问答(KBQA)、知识图谱检索、知识图谱推荐等。
华师数据学院·王嘉宁
研究方向:深度学习、自然语言处理、知识图谱。
研究兴趣:大语言模型训练与推理、知识增强预训练、Prompt-tuning、小样本学习、问答系统、信息抽取。
展开
-
论文解读:Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question
论文解读:Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question 知识图谱问答的任务目标是在给定一个自然问句以及对应的知识库下,找到正确的答案(实体)。本文则通过多任务学习的框架,利用多视角注意力机制完成知识图谱问答任务。1、什么是知识图谱? 知识图谱是近年来非常热门的研究内容,现如今可以和自然语言处理、计算机视觉一并作为一个新的研究领域。知识图谱通常可以抽象为知识原创 2020-08-14 21:11:38 · 1298 阅读 · 0 评论 -
论文解读:Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
论文解读:Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text 知识库问答通常存在一个问题,就是由于知识库不充分导致在一定的推理范围内无法找到相应的答案,因此,可以通过引入额外非结构化文本做辅助增强。本文提出一种开放领域的知识库和文本问答方法。一、简要信息序号属性值1模型名称GRAFT-Nets2所属领域自然语言处理3研究内容知识库问答4核心内容原创 2020-10-23 11:25:42 · 2287 阅读 · 1 评论 -
论文解读:Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases
论文解读:Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases(2020ACL)简要信息:序号属性值1模型名称-2所属领域自然语言处理3研究内容KBQA4核心内容Beam search;Query Graph Generation5GitHub源码https://github.com/lanyunshi/Multi-hop原创 2021-01-06 11:38:16 · 1246 阅读 · 3 评论 -
【推荐系统】RippleNet——基于知识图谱偏好传播的推荐系统
【推荐系统】RippleNet——基于知识图谱偏好传播的推荐系统论文名称:《RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems》PDF:https://arxiv.org/pdf/1803.03467源码地址:https://github.com/hwwang55/RippleNet.一、前言 推荐系统(Recommender System, RS)作为最经典最重要的人工智原创 2020-09-13 22:19:39 · 3568 阅读 · 2 评论 -
论文解读:Question Answering over Freebase with Multi-Column Convolutional Neural Networks
论文解读:Question Answering over Freebase with Multi-Column Convolutional Neural Networks KB-QA是一种问答系统任务,其是基于知识库进行的问答。给定一个知识库,其包含若干个实体和边,每两个实体和相连的边为一个三元组。实体分为客观实体和属性,客观实体就是客观存在的一般实体,例如人名地名机构名,属性则是一种特殊的实...原创 2020-03-02 23:04:21 · 949 阅读 · 0 评论 -
论文解读:Are Noisy Sentences Useless for Distant Supervised Relation Extraction?
论文解读:Are Noisy Sentences Useless for Distant Supervised Relation Extraction? 远程监督关系抽取普遍遭受噪声的影响,先前的工作一直关注如何降低噪声对分类产生的错误影响,例如通过多示例学习以及句子级别的注意力机制,或者使用强化学习、对抗学习直接过滤噪声等。本文则完全从新的角度出发——是否可以将那些可能是噪声的标签纠正,这样即不会降低语料的数量,也能直接提升语料的质量。一、简要信息序号属性值1模型名称DC原创 2020-09-02 21:06:55 · 721 阅读 · 1 评论 -
论文解读:Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader
论文解读:Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader 知识库问答(KBQA)是一种领域问答系统(Domain QA),基本原理是给定一个问句和一个知识库,从知识库中找到对应的答案实体。考虑到知识库是不充分的,该工作则结合非结构化文本来解决一些问句无法直接在知识库中寻找答案的问题。一、简要信息序号属性值1模型名称SGR EADER + KAR EADER2所属原创 2020-06-04 10:57:43 · 2026 阅读 · 0 评论 -
论文解读:Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings
论文解读:Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings 知识库问答(KBQA/KGQA)是指给定一个自然语言问句和对应的知识库,试图从知识库中返回对应正确的答案。现如今一些方法是通过对问句中的候选实体在知识库中对齐,并获得一定跳数范围内的子图,通过排序算法或TopK算法等获得有可能的答案。但是有时候知识库是不充分的,某些目标答案需要经过非常长的推理路径才能获得,而在原创 2020-08-20 16:02:26 · 6166 阅读 · 5 评论 -
论文解读:Knowledge Base Relation Detection via Multi-View Matching
论文解读:Knowledge Base Relation Detection via Multi-View Matching原创 2020-06-05 11:02:48 · 641 阅读 · 0 评论 -
论文解读:Improved Neural Relation Detection for Knowledge Base Question Answering
论文解读:Improved Neural Relation Detection for Knowledge Base Question Answering 本文解决KBQA中的子问题——Relation Detection(关系检测)。关系检测目的是给定一个问句,根据知识库来判断该问句目标的关系是什么。例如问句“中国的首都是哪里”,我们会先锁定问句的中心实体(主题词)是“中国”,其次检测这句话目标是问与“中国”这个实体具有“首都”关系的实体,因此类似于知识图谱的补全工作:(中国,首都,?)。因此关系检测原创 2020-06-19 11:47:54 · 1277 阅读 · 0 评论 -
论文解读:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
论文解读:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Information KB-QA任务的第二作,其是对上一篇(Question Answering over Freebase with Multi-Column Convolutional Neural Ne...原创 2020-03-08 11:30:47 · 1471 阅读 · 0 评论