知识表示学习
文章平均质量分 79
知识表示学习是指对知识图谱中实体和边的嵌入式表征,是知识图谱表示与补全的重要内容。本栏主要介绍经典的模型。
华师数据学院·王嘉宁
研究方向:深度学习、自然语言处理、知识图谱。
研究兴趣:大语言模型训练与推理、知识增强预训练、Prompt-tuning、小样本学习、问答系统、信息抽取。
展开
-
论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding
论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding 先前的知识表示方法(TransE、TransH、TransR、TransD、TranSparse等)的损失函数仅单纯的考虑到 h+rh+rh+r 和 ttt 在某个语义空间的欧式距离,认为只要欧式距离最小,就认为 hhh 和 ttt 的关系为 rrr ...原创 2019-12-13 22:56:58 · 3567 阅读 · 2 评论 -
论文解读:(TranSparse)Knowledge Graph Completion with Adaptive Sparse Transfer Matrix
论文解读:(TranSparse)Knowledge Graph Completion with Adaptive Sparse Transfer Matrix 先前的基于深度学习的知识表示模型TransE、TransH、TransR(CTransR)和TransD模型均一步步的改进了知识表示的方法,在完善知识图谱补全工作上逐渐提高效果。通过先前的模型,我们基本掌握了知识表示的学习方法:首先通...原创 2019-12-11 15:21:34 · 3217 阅读 · 0 评论 -
论文解读:(TransD)Knowledge Graph Embedding via Dynamic Mapping Matrix
论文解读:(TransD)Knowledge Graph Embedding via Dynamic Mapping Matrix 知识图谱作为人工智能应用的重要资源,表示学习对知识图谱的完善和应用至关重要。先前提出的TransE、TransH、TransR模型对表示学习提升不少,表示学习对关系抽取、三元组分类以及链接预测等方面具有作用。TransD模型改进TransR,认为不同的实体应映射到...原创 2019-12-07 22:44:10 · 5589 阅读 · 0 评论 -
论文解读:(TransR)Learning Entity and Relation Embeddings for Knowledge Graph Completion
论文解读:(TransR)Learning Entity and Relation Embeddings for Knowledge Graph Completion TransH在TransE基础上做出的改进,提高了知识表示的效果,在一定程度上解决了复杂关系的处理,同时在链接预测、三元组分类和关系抽取任务上相比传统的方法(距离模型、非结构模型、单层神经网络、双线性模型等)达到最优,然而Tra...原创 2019-12-04 14:45:41 · 7694 阅读 · 4 评论 -
论文解读:(TransH)Knowledge Graph Embedding by Translating on Hyperplanes
论文解读:(TransH)Knowledge Graph Embedding by Translating on Hyperplanes TransE是一种经典的知识表示学习方法,其通过对头实体、尾实体及对应关系进行建模,设计 d(h+l−t)d(h+l-t)d(h+l−t) 的能量函数,并运用负采样和随机梯度下降的方法对待训练的向量进行调整,从而能够得到不错的低维向量。TransE模型在链接...原创 2019-12-01 22:25:09 · 8283 阅读 · 4 评论 -
论文解读:(TransE)Translating Embeddings for Modeling Multi-relational Data
论文解读:(TransE)Translating Embeddings for Modeling Multi-relational Data 表示学习是深度学习的基石,正式表示学习才能让深度学习可以自由的挖掘更深层次的特征。自word embedding(词嵌入表示)的提出,一种对结构化信息的三元组的表示学习也进入研究视野。TransE模型正是一种基于深度学习的知识表示方法,也是Trans系列...原创 2019-11-29 22:47:28 · 13439 阅读 · 1 评论