给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K的数对。例如K = 8,数组A:{-1,6,5,3,4,2,9,0,8},所有和等于8的数对包括(-1,9),(0,8),(2,6),(3,5)。
Input
第1行:用空格隔开的2个数,K N,N为A数组的长度。(2 <= N <= 50000,-10^9 <= K <= 10^9) 第2 - N + 1行:A数组的N个元素。(-10^9 <= A[i] <= 10^9)
Output
第1 - M行:每行2个数,要求较小的数在前面,并且这M个数对按照较小的数升序排列。 如果不存在任何一组解则输出:No Solution。
Input示例
8 9 -1 6 5 3 4 2 9 0 8
Output示例
-1 9 0 8 2 6 3 5
5W的数据 暴力 n^2 肯定是要TLE的,所以要想办法优化一下
代码应该可以看得懂
#include <iostream>
#include <algorithm>
using namespace std;
int a[50010];
int main()
{
int k,n,flag = 0;
cin >> k >> n;
for(int i = 0;i<n;i++)
cin >> a[i];
sort(a,a+n);
int i = 0,j = n-1;
while(i < j)
{
int n = a[i] + a[j];
if(n == k)
{
flag = 1;
cout<<a[i++]<<" "<<a[j--]<<endl;
}
else if(n < k)
i++;
else
j--;
}
if(!flag)
cout<<"No Solution"<<endl;
}