plt.axis()用法详解

plt.axis()用法详解

1、plt.axis(‘square’) 作图为正方形,并且x,y轴范围相同,即
2、plt.axis(‘equal’) x,y轴刻度等长

在这里插入图片描述
3、plt.axis(‘off’) 关闭坐标轴 官网上也贴出了其他的一些选项

在这里插入图片描述
4、plt.axis([a, b, c, d]) 设置x轴的范围为[a, b],y轴的范围为[c, d]

plt.axis([0,10,0,20])

在这里插入图片描述

在设置坐标轴范围的前提下想使图片仍为正方形,可以在加上plt.figure(figsize=(a, a)),a为想设置的图片大小

参考资料:https://blog.csdn.net/jose_m/article/details/105594038

https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.axis.html

### Matplotlib `plt.scatter` 函数参数详解 #### 基本功能描述 Matplotlib 的 `scatter()` 方法用于绘制散点图,可以直观展示两个变量之间的关系。通过调整不同参数,能够实现丰富的可视化效果。 #### 主要参数说明 - **x, y**: 数据序列,分别表示横坐标和纵坐标的数值列表或数组[^2]。 - **c (color)**: 定义颜色属性,接受单个颜色字符串(如'r'代表红色)、长度与x/y相同的颜色序列或是连续的颜色映射名称(colormap)。这允许根据第三个维度的数据来着色点位[^3]。 - **s (size)**: 控制每个标记大小,默认单位为平方像素。同样支持传入固定值或按比例缩放后的尺寸向量,从而反映另一组数据特征。 - **alpha**: 设置透明度级别,在0到1之间取值,可用于处理重叠区域的视觉表现。 - **marker**: 指定绘制裁剪形状,常见的有'o'(圆圈), '^'(三角形上指),'s'(正方形)等;也可以自定义符号。 - **linewidths / edgecolors**: 分别设定边框宽度以及边缘色彩,当希望突出某些特定点时非常有用。 - **label**: 提供给legend使用的标签文字,便于识别不同的数据集[^1]。 下面给出一段综合运用上述选项的例子: ```python import numpy as np import matplotlib.pyplot as plt # 创建随机测试数据 N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) area = (30 * np.random.rand(N))**2 # 面积范围从0至900 plt.scatter(x, y, s=area, c=colors, alpha=0.5, marker="*", linewidths=2, edgecolors='b', label='Random Points') plt.xlabel('X Axis Label') plt.ylabel('Y Axis Label') plt.title('Customized Scatter Plot Example') plt.legend() plt.show() ``` 此段代码展示了如何利用多种参数定制化一个美观且信息量大的散点图表。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值