FaceNet 模型特点
该模型的主要特点在损失函数,使得所有同类人脸特征向量的欧式距离要小于非同一人脸间的欧式距离。表达式如下:
损失函数如下,最小化L:
如上图所示,我们能看出同一人脸的距离要远小于不同人脸的距离。且一般我们判断是否为同一人只需要设置一个距离阈值即可对人脸进行判断。
通过这两组实验的distance,我们很容易知道设置距离阈值0.5就可以区分赵丽颖和杨幂了!
FaceNet结构
FaceNet 模型特点
该模型的主要特点在损失函数,使得所有同类人脸特征向量的欧式距离要小于非同一人脸间的欧式距离。表达式如下:
损失函数如下,最小化L:
如上图所示,我们能看出同一人脸的距离要远小于不同人脸的距离。且一般我们判断是否为同一人只需要设置一个距离阈值即可对人脸进行判断。
通过这两组实验的distance,我们很容易知道设置距离阈值0.5就可以区分赵丽颖和杨幂了!
FaceNet结构