tensenflow的基本操作
一、导入tensorflow:
import tensorflow as tf
二、建立变量、常量:
w=tf.variable()变量
w=tf.constant()常量
三、初始化变量:
init_op=tf.global_variables_initializer()
四、运行:
两种方法:
1. with tf.Session() as sess:
sess.run(init_op)
2.sess=tf.Session()
print(sess.run(w))
五、其实tensorflow跟numpy差不多,numpy的一些函数在tf中都适用:
注意:tensorflow的变量格式最好是用float32,原因是cpu和gpu都适用,避免以后出现的一些难以解决的错误。
六、常用tf语句:
tf.assign(a,b):作用是把后面的值传给前面的值
tf.train.Saver:可以保存
tf.placeholder:可以把tensorflow看作一张图,tf.placeholder可以把图中的一些变量位置占用,后期再赋值。
writer = tf.summary.FileWriter("./tmp", sess.graph),可以把tensorflow的图保护在定义的路径中。
#在1.0版本中,tf.train.SummaryWriter已经改为tf.summary.FileWriter
tf.rank(array).eval():可以查看矩阵维度
tf.shape(array).eval():可以查看矩阵的行列数
tf.argmax(array,0).eval():可以按行找出矩阵最大值的索引值,tf.argmax(array,1).eval()则找出按列找出矩阵最大值的索引值
tf.equal(a,b):a与b对比是否相等,若相等返回true,否则返回fault
tf.cast(a,"float"):把a转换成float类型