Tensorflow MNIST
本文主要是自己在入门TensorFlow时候的对其中概念的一些理解。可能有不对的地方。谢谢。
MNIST数据集下载
参考文档中使用的是input_data.py文件进行MNIST数据的下载,但这份源码在参照文档中的链接是googlesource,国内无法下载,只好把从其他地方下载源码。代码如下:
我使用的python3以上的版本,如果使用的是python2.7的版本请将下面两点
- urllib.request.urlretrieve修改成urllib.urlretrieve
- numpy.frombuffer(bytestream.read(4), dtype=dt)[0]修改成numpy.frombuffer(bytestream.read(4), dtype=dt)
"""Functions for downloading and reading MNIST data."""
from __future__ import print_function
import gzip
import os
import urllib.request
import numpy
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
print("filepath %s",filepath)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
print("There is source %s",filepath)
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename,"rb") as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False):
if fake_data:
self._num_examples = 10000
else:
assert images.shape[0] == labels.shape[0], (
"images.shape: %s labels.shape: %s" % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1.0 for _ in xrange(784)]
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
data_sets.train = DataSet([], [], fake_data=True)
data_sets.validation = DataSet([], [], fake_data=True)
data_sets.test = DataSet([], [], fake_data=True)
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels)
data_sets.validation = DataSet(validation_images, validation_labels)
data_sets.test = DataSet(test_images, test_labels)
return data_sets
Softmax回归简介
Softmax通俗来说是对一个集合的每一项是否是正确答案给出一个概率,总和是1.比如0~9的数字,结果的正确答案是9,那个9的概率比如是80%,其他0~8加起来的概率总和是20%。一般用于神经网络的最后一步计算出集合的概率分布。
简单的数学表达式
softmax = normalize(exp(evidence))
其中
W:权重(针对每个像素点的加权)
x :输入(本次代表的是图片中的像素点)
b :偏移量(去除输入带来的干扰项)
矩阵表达式
Tensorflow代码
使用TensorFlow之前先导入他
import tensorflow as tf
下载导入我们的数据
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
定义我们的输入变量
x = tf.placeholder("float", [None, 784])
目前为止x还没有实际的值,只是通过placeholder占了一个位置,在后面Tensorflow运行的时候赋值。其中的784是因为本次MNIST的数据集图片大小是28*28=784。None表示有很多张图片,具体数量没有定死。
定义之前说过的权重和偏移量
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
Variable代表这个变量是可变的,因为在后面的训练中会对W和b进行修改。784代表一张图片的大小,10代表最后我们的输出一共有10种,即0~9。这部分也可以使用placeholder来定义。
模型实现
y = tf.nn.softmax(tf.matmul(x,W) + b)
tf.matmul代表矩阵乘法
定义与计算损失函数
损失函数是用来评估我们的模型好坏的。通俗来说就是比对预算的结果和真实结果的差距。一般采用交叉熵函数。
表达式:
其中y 是我们预测的概率分布, y’ 是实际的分布
代码:
y_ = tf.placeholder("float", [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
y_是我们预测的结果,y是实际结果
reduce_sum是元素的总和
训练函数
采用梯度下降算法,以0.01的学习速率最小化交叉熵
如果要替换其他的学习方法替换这一行代码就可以了
代码:
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
开始训练
初始化,并开始训练
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
前三行初始化,然后让模型训练1000次每次使用100张图片的数据
feed_dict中指定输入和实际结果,即最开始定义的placeholder和用来和我们预测结果进行比对的实际结果
评估我们的结果
用测试数据来评价我们的模型输入x变成了mnist.test.images而不是之前mnist.train.images
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
工程整体代码:https://github.com/larry-kof/tensorflow_study1
参考:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html