白话解析B+树并附Java完整实现

本文深入浅出地解析了B+树的概念,包括非叶节点和叶节点的结构,以及阶数的定义。文章详细阐述了B+树的等值查询、范围查询、更新、插入和删除操作,强调了阶数对性能的影响。此外,还提供了基于内存的B+树Java实现,并附带单元测试。完整代码可在GitHub找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B+树是一种树数据结构,通常用于数据库操作系统文件系统中。B+树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+树被用于MySQL数据库的索引结构。这里为了便于大家理解,我基于内存(因为数据量的原因,实际上的B+树应该基于磁盘等外存,基于内存的比较适合作为Demo,同时还可以作为一种多路搜索树)实现了B+树的增删查改操作(包括节点分裂和节点合并),并开源在了:GitHub - Morgan279/MemoryBasedBPlusTree: An implementation of B+Tree (a multiway search tree based on the memory, i.e., all data records are stored in the memory instead of the disk).

B+树的重要前置概念

B+ 树是一种树数据结构(一个n叉树),这里我们首先介绍B+树最重要的概念:B+树节点。一棵B+树的节点包含非叶节点叶子节点两类:

非叶节点

如上图所示,非叶节点包含两部分信息:

  • Entry: 索引键,用于索引数据,它必须是可比较的,在查找时其实也是根据Entry的有序性来加快查找速度(原理和二分查找类似,通过有序性来剪枝搜索空间,所以是对数级的实际复杂度)
  • Child: 指向其孩子节点的指针,可以通过它访问到该非叶节点的子节点

对于非叶节点来说,Child孩子指针的数量总是等于Entry的数量加1,也就是说一个非叶节点如果有3个Entry的话,那么就可以得到它有 3+1=4 个孩子(子节点)。

叶节点

如上图所示,叶节点包含三部分信息:

  • Entry: 与非叶节点中的Entry一致,用于索引数据
  • Data指针: 用于指向具体数据的指针(从这里可以发现,非叶节点的指针只能找到它的孩子的地址,而真正的数据的地址只能通过叶节点找到,即可以理解为所有数据都存储在叶节点上)
  • Next指针: 用于指向该叶节点的后面一个叶子节点,最后一个叶子节点的Next指针为空(Next指针存在的意义是加快范围查询)。

 对于叶节点来说,Data数据指针的数量总是等于Entry的数量,也就是说一个叶节点如果有3个Entry的话,那么就可以得到它索引了3个数据项,这里与非叶节点不同的原因是叶节点分出了一个指针去指向了下一个叶节点,所以其实无论是非叶节点还是叶节点,他们Entry数量和指针数量的关系都是:指针数量等于Entry数量加1。

为了使逻辑更加清晰,后面我在介绍”B+树的操作“时将会按非叶节点和叶节点分别进行讨论。

阶数

一棵B+树通常用 m 来描述它的阶数,它的作用是描述一个B+树节点中Entry数量的上限和下限。在大多数对于B+树的介绍了,一般描述一个m阶的B树具有如下几个特征:

1.根结点至少有两个子女。

2.每个中间节点都至少包含ceil(m / 2)个孩子,最多有m个孩子。

3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m。

4.所有的叶子结点都位于同一层。

5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划

上面的特征可能看起来会比较复杂,所以这里用我自己的一个更简单的理解来解释一下。我们设一个B+树节点的Entry数量上限为Key_Bound,简写为K,

则 K = m - 1。得到K之后,获取Entry数量的下限也变得很简单,就是 K / 2 (整型除法,下取整)

根据我们上面对B+树节点的介绍,我们可以根据K得到很轻松地得到节点中对应指针的数量: K + 1

用代码表示如下:

public BPlusTree(int order) {
   this.KEY_UPPER_BOUND = order - 1; //Entry 上限
   this.UNDERFLOW_BOUND = KEY_UPPER_BOUND / 2; //Entry 下限
}

这样我们拿到了B+树中Entry的上限、下限及对应的指针数量之后,后面我们就可以不必再理会那个计算更复杂的m了。

在实际的应用中,B+树的阶数其实越大越好,因为当B+树的阶数越大,B+树一个节点所能容纳的Entry就会越多,B+树就会变得更”矮“,而更”矮“意味着更少的磁盘I/O,所以一般情况下B+树的阶数跟磁盘块的大小有关。

B+树的操作

等值查询(query)

B+树的等值查询指:找到B+树叶节点Entry与查询Entry完全相等所对应的数据,等值查询的过程主要是依赖于Entry的有序性:设B+树某个节点的Entry e 是第index个Entry,则该节点的第index个孩子中的所有Entry都是小于e的,该节点的第index+1个孩子中的所有Entry都是大于等于e的。所以我们可以根据这个有序性,自顶向下逐层查找,最终找到匹配的叶子节点然后获取到数据。

对于非叶节点,只需要找到第一个大于查询Entry的子节点,即 upper bound(如果所有子节点都小于等于查询Entry,则 uppber bound 为子节点的数量),然后如此递归地让这个子节点进行查找即可。其中最关键的就是找到第一个大于查询Entry的子节点 upper bound,因为查询Entry只可能出现在upper bound 的前一个位置。由于B+树Entry的有序性,在这里我们可以使用二分搜索实现这一点,因为二分搜索的效率非常高(O(logN)级别),代码实现如下:

        protected int entryIndexUpperBound(K entry) {
            int l = 0;
            int r = entries.size();
            while (l < r) {
                int mid = l + ((r - l) >> 1);
                if (entries.get(mid).compareTo(entry) <= 0) {
                    l = mid + 1;
                } else {
                    r = mid;
                }
            }
 
<think>好的,用户之前问过关于B+在一亿行数据下会分几层的问题,现在他要求用通俗易懂的白话文例子解释B+。我需要先理解用户的需求,他可能对B+的结构和工作原理不太清楚,需要更直观的比喻或者例子来帮助理解。 首先,用户可能没有计算机科学背景,或者对数据结构不熟悉,所以需要用日常生活中的例子来解释。比如,图书馆的索引系统、字典的目录等。这些例子贴近生活,容易理解。 接下来,我要回忆B+的特点:多层级结构、叶子节点存储数据、非叶子节点作为索引、叶子节点之间有指针连接等。需要把这些特点融入到例子中,确保例子准确且不误导用户。 然后,考虑用户的潜在需求。用户可能不仅仅是想要一个例子,而是想通过例子理解B+为什么高效,比如查询速度快、适合范围查询等。所以例子需要突出这些优势,比如在图书馆找书时,如何通过索引快速定位,而不需要逐本查找。 另外,用户之前的提问涉及InnoDB的B+分层,可能他对数据库的索引机制感兴趣。所以例子中可以结合数据库的应用场景,比如如何通过主键快速找到记录,或者范围查询时如何高效遍历。 需要注意避免使用专业术语,用简单的语言描述。比如,把非叶子节点比作目录,叶子节点比作实际存放书籍的书架。同时,强调分层结构如何减少查询次数,类似于从目录到章节再到具体页面的过程。 还要检查是否有遗漏的关键点,比如B+的平衡性、叶子节点的链表结构等。这些可能需要用例子中的元素来体现,比如图书馆的书架排列整齐,每个书架都有标签,并且书架之间按顺序排列,方便按顺序查找。 最后,确保整个解释逻辑清晰,步骤分明,让用户能够一步步理解B+的结构和工作原理。可能需要分步骤,从简单结构开始,逐步扩展到多层结构,并说明每层的作用和优势。</think>好的!我用一个**图书馆找书**的例子来解释B+,保证你一听就懂。 --- ### **场景设定** 假设你是一个图书管理员,管理一个超大的图书馆: - **藏书量**:1,000,000本(100万本) - **书籍排列规则**:所有书按编号从小到大排列(类似数据库的主键排序) - **找书方式**:读者报出书号,你要快速找到对应的书架位置 --- ### **传统暴力法(非索引)** 如果直接把所有书**按顺序摆成一排**: - **优点**:存书简单,直接往后面加 - **缺点**:找书时要从头到尾一本本翻,最坏情况要翻100万次 → **效率极低** --- ### **B+方案(智能索引)** 你设计了一个**三级索引系统**来加速找书: #### **1. 第一层:总目录(根节点)** - **内容**:记录每个区域的**起始编号范围** ``` [区域A: 1-400] [区域B: 401-800] [区域C: 801-1200] ...(共约2500条) ``` - **作用**:根据书号判断属于哪个区域 → **1次查询缩小到1/2500范围** #### **2. 第二层:区域分目录(非叶节点)** - **内容**:每个区域内部的书架分组信息 例如区域A的分目录: ``` [书架1: 1-100] [书架2: 101-200] [书架3: 201-300] [书架4: 301-400] ``` - **作用**:进一步缩小到具体书架 → **2次查询后锁定1个书架** #### **3. 第三层:实际书架(叶节点)** - **内容**:书架上按编号顺序摆放书籍,比如: ``` 书架2:101, 102, 103,..., 200(共100本书) ``` - **额外设计**: - 书架之间用绳子串联(**叶子节点双向链表**) - 找“101-150号书”时,找到书架2后,直接顺着绳子往后翻即可(**范围查询优化**) --- ### **关键特性解释** | B+术语 | 图书馆类比 | 核心优势 | |------------------|---------------------------|----------------------------| | **非叶节点** | 总目录、区域分目录 | 快速缩小搜索范围 | | **叶节点** | 实际存放书籍的书架 | 直接获取数据 | | **双向链表** | 书架之间的串联绳子 | 快速范围查找(如找101-150号书) | | **平衡性** | 每个区域的书架数量基本相同 | 保证搜索效率稳定 | | **多层级** | 总目录→区域分目录→书架 | 百万数据只需查3次 | --- ### **实际效果对比** - **暴力搜索**:平均需要50万次查找 → **慢如蜗牛** - **B+搜索**:3次目录查询 + 1次书架内查找 → **快如闪电** --- ### **为什么数据库用B+?** 1. **减少磁盘读取**:目录存储在内存,实际书架(数据)在磁盘,每次查目录相当于减少磁盘IO 2. **适合范围查询**:绳子串联的书架可以直接顺序扫描 3. **高扩展性**:书增加到1亿本?多加一层目录即可(4层B+) --- **总结**:B+就像一个超级智能的图书管理员,通过多级目录快速定位数据位置,用最少的步骤找到你想要的书(数据)!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knight丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值