基于python的音乐推荐系统设计与实现
Design and Implementation of a Music Recommendation System based on Python
文章目录
摘要
本文以基于Python的音乐推荐系统的设计与实现为研究对象,旨在实现一个能够根据用户的听歌历史和偏好,自动为其推荐个性化音乐的系统。首先,利用Python语言开发音乐数据爬取模块,通过爬取流行音乐平台的音乐数据,获取大量的音乐资源。然后,设计一个用户画像生成模块,根据用户的听歌历史数据和其他行为数据,分析用户的音乐喜好,构建用户画像。接下来,采用协同过滤算法,包括基于用户和基于内容的协同过滤算法,实现音乐推荐模块,为用户推荐可能感兴趣的音乐。此外,引入深度学习技术,利用深度神经网络从音乐的音频特征中提取音乐的情感特征。最后,通过用户测试和性能评估,验证系统的推荐准确度和性能。实验结果表明,该基于Python的音乐推荐系统能够根据用户的个性化需求,提供准确、多样化的音乐推荐服务。本研究对于设计和实现其他个性化推荐系统,尤其是音乐推荐系统,具有一定的指导意义。