行星齿轮箱行星架裂纹故障振动仿真
摘要
行星架裂纹是齿轮箱的重要故障源之一。目前行星架裂纹故障对行星齿轮箱振动响应的影响尚缺乏深入研究。本文提出一种考虑时变传递路径和行星轮系载荷非均匀分配的振动仿真模型。根据由行星架裂纹导致的行星轮角位移函数,分析行星轮角位移对行星轮系载荷分配特性的影响,构建考虑时变传递路径和载荷分配系数的振动仿真模型。通过对比仿真与实测信号的阶比谱边带结构,验证了模型的有效性。
引言
行星齿轮箱利用多个行星轮分担输入载荷,具有较高的承载能力,得到广泛应用。然而,由于制造、安装等误差及故障的存在,各平行路径间所承担的载荷存在差异,造成振动异常,进而加快齿轮箱失效。因此,研究行星架裂纹故障导致的载荷非均匀分配对振动响应的影响具有重要意义。
国内外学者构建了不同模型研究行星齿轮箱载荷分配特性。90年代,Singh等1建立不同行星轮个数的有限元/理论混合模型,研究了载荷分配对行星轮孔位置误差的敏感程度;随后,基于太阳轮是否浮动,研究了行星轮存在轴孔位置误差均载系数计算公式2 3。Ligata等4提出离散模型推导了行星轮系载荷分配系数计算公式,通过有限元/理论混合模型及实验对比验证模型的有效性。国内,肖铁英等人5提出当量啮合误差、等效啮合刚度等概念,推导了均载系数的计算公式。李阳6等人研究了间隙浮动机构的行星轮系静力学载荷分配问题。
McFadden等7研究了行星齿轮箱振动频谱的非对称现象,指出其并非故障导致。随后,McNames8通过傅里叶级数进一步解释了非对称现象产生原因。Inalpolat等9提出了简化的数学模型,根据行星轮的分布情况将行星齿轮箱分为5类,并分析了振动频谱的边频带特性。国内,冯志鹏等10分析了三种振动传递路径,总结了不同状态下振动频谱特征。雷亚国等11基于时变传递路径提出振动信号仿真模型,研究了载荷分配系数和行星轮角位置误差对振动频谱结构的影响。
以上行星轮系载荷分配模型、行星齿轮箱振动仿真的研究,主要针对行星轮角位置误差,且研究对象多为齿轮,缺乏与行星架裂纹故障相关行星轮角位移仿真模型及其对系统振动响应影响的研究。
为解决以上问题,本文提出一种行星齿轮箱行星架裂纹故障振动仿真模型。通过行星轮角位移函数研究了行星架裂纹故障对行星轮系载荷分配系数的影响;研究了时变传递路径下行星架裂纹故障对行星齿轮箱振动频谱边带结构的影响,并通过试验验证模型的有效性。
1 行星轮角位移函数
行星架的主要作用是通过立柱或轴承孔将行星轮固定在合适的位置角,使载荷平均分配到多个行星轮。行星齿轮箱运行过程中,较高振动幅值及周期载荷易使其发生裂纹故障。以“黑鹰”直升机主传动系统为例,裂纹演变可分为四个阶段:无裂纹、裂纹萌生、短裂纹,长裂纹。裂纹多产生于立柱与行星架盘接触的应力集中区域,随后沿立柱切线向行星架外缘萌生,最后,沿立柱与轮毂公切线向内延伸,直至贯穿行星架半径12 13。
行星架裂纹导致其与行星轮的接触刚度下降,行星轮沿圆周方向产生一附加角位移14。在实际应用中,不可避免存在太阳轮、行星轮、行星架及齿圈的制造、装配等误差,因此,即使没有行星架裂纹故障影响,各行星轮同样存在位置误差。本文假设传感器安装于静止齿圈上方的箱体上,太阳轮为浮动中心构件,在理想状态下,行星轮均匀分布于行星架盘。行星架裂纹发生于立柱1与行星架连接处,使行星轮1发生 Δ θ f 1 Δθ_{f1} Δθf1的角位移,如图所示。
根据文献12行星架裂纹静力学仿真结果(见表1,太阳轮齿数 Z s = 38 Z_\text{s}=38 Zs=38,行星轮齿数 Z p = 47 Z_\text{p}=47 Zp=47,齿圈齿数 Z r = 132 Z_\text{r}=132 Zr=132, N p = 5 N_\text{p}=5 Np=5, N p N_\text{p} Np为行星轮个数),行星轮角位移随行星架的旋转呈周期性变化,将行星架裂纹导致的行星轮角位移拟合为一元三次函数, Δ θ f i , i = 1 , 2 , 3 … N p Δθ_{fi}, i=1, 2, 3…N_\text{p} Δθfi,i=1,2,3…Np,可表示为:
Δ θ f i = ( a i d 3 + a 2 i d 2 + a 3 i d + a 4 i ) [ 1 + sin ( 2 π f c t ) ] \Delta \theta _ { f i } = ( a _ { i } d ^ { 3 } + a _ { 2 i } d ^ { 2 } + a _ { 3 i } d + a _ { 4i } ) \left[ 1 + \sin ( 2 \pi f _ \text{c } t ) \right] Δθfi=(aid3+a2id2+a3id+a4i)[1+sin(2πfc t)]
式中, d d d表示行星架裂纹长度, f c f_\text{c} fc为行星架旋转频率, a 1 i , a 2 i , a 3 i , a 4 i a_{1i}, a_{2i}, a_{3i}, a_{4i} a1i,a2i,a3i,a4i为行星轮角位移函数的拟合系数,如表2所示。本文增加常数项 a 4 i = 0.17 ° a_{4i}=0.17° a4i=0.17°表示无裂纹时行星轮角位置误差。
2行星架裂纹的载荷分配
行星轮的载荷分配易受行星轮角位移切向分量的影响,即使较小的角位移同样会影响行星轮系载荷分配系数(Load sharing factor, LSF)。本文通过Ligata等提出的平动类比模型计算各行星轮载荷分配系数4,行星轮系载荷分配系数可表示为:
L S F i = 1 N p + k e R s 2 N p T s δ p i , i = 1 , 2 , 3 , . . . , N p L S F _ { i } = \frac { 1 } { N _ { \text{p} } } + \frac { k _ { \text{e} } R _ { \text{s} } } { 2 N _ { \text{p} } T _ { \text{s} } } \delta _ { \text{p}i } ,i = 1 , 2 , 3 , . . . , N _ { \text{p} } LSFi=Np1+2NpTskeRsδpi,i=1,2,3,...,Np
{ δ p i = 0 , N p = 3 δ p i = e i − e ( i + 1 ) + e ( i + 2 ) − e ( i + 3 ) , N p = 4 δ p i = 2 e i − 1.618 e ( i + 1 ) + 0.618 e ( i + 2 ) + 0.618 e ( i + 3 ) − 1.618 e ( i + 4 ) , N p = 5 \left\{ \begin{array}{l} \delta _{pi}=0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ N_p=3\\ \delta _{pi}=e_i-e_{\left( i+1 \right)}+e_{\left( i+2 \right)}-e_{\left( i+3 \right)},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ N_p=4\\ \delta _{pi}=2e_i-1.618e_{\left( i+1 \right)}+0.618e_{\left( i+2 \right)}+0.618e_{\left( i+3 \right)}-1.618e_{\left( i+4 \right)},\ \ N_p=5\\ \end{array}\ \right. ⎩
⎨
⎧δpi=0, Np=3δpi=ei−e(i+1)+e(i+2)−e(i+3), Np=4δpi=2ei−1.618e(i+1)+0.618e(i+2)+0.618e(i+3)−1.618e(i+4), Np=5
式中, R s R_s Rs为太阳轮节圆半径, e i e_i ei为第 i i i个行星轮切向角位移分量, e i = 2 ( R r − s ) sin ( Δ θ f i / 2 ) cos ( Δ θ f i / 2 ) e_i=2(R_r-s)\text{sin}(Δθ_{fi}/2)\text{cos}(Δθ_{fi}/2) ei=2(Rr−s)sin(Δθfi/2)cos(Δθfi/2)11, T s T_s