对抗学习
文章平均质量分 75
对抗攻击是机器学习与计算机安全的结合,是一个新兴的研究领域。以前设计的机器学习模型在面对攻击者精心设计的对抗攻击时往往会达不到预期的准确度,这种错误在如自动驾驶汽车等的实际应用中的影响是致命的。
qq_36488756
这个作者很懒,什么都没留下…
展开
-
论文阅读《Paraphrasing Revisited with Neural Machine Translation》
摘要从神经网络翻译的角度重新审视双语转述,提出了一种基于神经网络的转述模式。模型可以表示连续空间中的释义,估计任意长度文本段之间的语义关联度,或者为任何输入源生成候选释义。跨任务和数据集的实验结果表明,神经解释比传统的基于短语的旋转方法更有效。相关工作关于释义的文献非常丰富,其方法因释义的类型(词汇或结构)、所用数据的类型(如单语或平行语料库)、潜在的表征(表面形式或句法树)以及习得方法本身而异。对于这些问题的概述,请感兴趣的读者参考Madnani和Dorr(2010)。本文专注于双语旋原创 2021-03-16 17:52:36 · 300 阅读 · 0 评论 -
论文阅读《Universal Adversarial Triggers for Attacking and Analyzing NLP》
摘要定义了通用的对抗触发器(Universal Adversarial Triggers):当触发序列连接到数据集中的输入时,触发模型产生特定预测。我们提出了一种在tokens上的梯度导向搜索,它可以找到成功触发目标预测的短触发序列。...原创 2021-03-14 19:27:25 · 831 阅读 · 0 评论 -
论文阅读《Generating Natural Language Adversarial Examples Moustafa》
摘要利用遗传算法实现基于种群的无梯度优化,只修改几个单词,保持与原文语义相似和句法连贯算法一、Perturb (单词替换规则)在列表中选择输入句子中要替换的单词是通过随机抽样来完成的,抽样概率与每个单词在反拟合嵌入空间中的欧氏距离δ内的相邻词数成正比,鼓励解集足够大,以便算法进行适当的修改。排除了常用冠词和介词(如a,to)的替换。Perturb这个子程序接受一个输入信号x',它可以是一个修改过的语句,也可以是与x相同的语句。它在句子x'中随机选择一个词w,然后选择一个合适的替换词.原创 2021-03-12 18:54:56 · 406 阅读 · 0 评论 -
论文阅读《Crafting Adversarial Input Sequences for Recurrent Neural Networks》
摘要将序列数据的对抗性样本形式化为优化问题。使用前向导数来适应RNN的特殊性。这包括如何计算循环计算图的前向导数。将对抗性扰动从模型预处理输入转换到原始输入。使用RNN进行分类和序列预测来评估我们技术的性能。平均而言,在一篇71字的电影评论中改变9个字就足以让我们的分类RNN在对评论进行情绪分析时做出100%错误的预测。我们还表明,生成序列可使用雅比扰动第二个RNN序列输出。算法一、对分类模型对Embedding层求雅克比显著(偏导)给出了我们必须扰动每个嵌入单词的方向,以减原创 2021-03-12 16:02:42 · 515 阅读 · 0 评论 -
论文阅读:《Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers Ji》
摘要原创 2021-03-12 11:46:15 · 522 阅读 · 0 评论 -
文本对抗:《Semantically Equivalent Adversarial Rules for Debugging NLP Models》
摘要:提出文本对抗攻击semantically equivalent adversaries (SEAs) ,生成能让语义不变同时改变模型预测结果的对抗样本提出语义等价对抗规则semantically equivalent adversarial rules (SEARs),这是一种能在很多实例上实行的简单而通用的规则生成的对抗样本可以发现模型bug,并且可以通过对抗训练修复模型漏洞...原创 2021-03-12 09:50:09 · 548 阅读 · 0 评论 -
有关对抗攻击的论文整理
对抗攻击对抗攻击对抗攻击的概念对抗攻击原理新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入对抗攻击对抗攻击的概念通过故意对数据集中输入样本添加难以察觉的扰动使模型以告知新都给出一个错误的输出。对抗攻击原理《In原创 2020-11-10 18:56:43 · 809 阅读 · 2 评论