matlab cpsd互功率谱

本文展示了一个使用MATLAB进行信号处理的例子,包括信号生成、频谱分析、交叉相关和功率谱密度估计。通过使用Blackman窗函数和cpsd函数,分析了两个正弦信号的频率特性,并比较了cpsd和xcorr函数的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

clear;
clc;

fs = 1024;
len = 1024;
t = 0:1/fs:(len-1)/fs;
x = 3.7 * sin(2pi16t);
y = 1.9 * sin(2
pi32t);

w = blackman(1024, ‘periodic’);

[p, f] = cpsd(x, y, w, 0, 1024, fs);
plot(f, abs§)
title(‘cpsd’)
max(abs§)

z = xcorr(x, y);
cnx = z(len:end) + [0 z(1:len-1)];
w = w’;
x1 = cnx .* w;
cxk1 = fft(x1, 1024);
p1=abs(cxk1) * 2 / (1024 * fs);

w1 = w .* w;
u = sum(w1) / 1024;
%p = p1/u;
p = p1;

f = 0:fs/1024:fs/2;
figure
plot(f, p(1:1024/2+1))
title(‘xcorr’)
max§

3种经典功率谱估计方法的MATLABA代码-功率谱代码.doc 3种MATLAB的经典谱估计方法 希望对大家有用~ 附件所有代码: 直接法: 直接法又称周期图法,它是把随机序列x的N个观测数据视为一能量有限的序列,直接计算x的离散傅立叶变换,得X,然后再取其幅值的平方,并除以N,作为序列x真实功率谱的估计。 Matlab代码: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos 3*cos randn); window=boxcar); %矩形窗 nfft=1024; [Pxx,f]=periodogram; %直接法 plot); 改进的直接法: 对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。 1. Bartlett法 Bartlett平均周期图的方法是将N点的有限长序列x分段求周期图再平均。 Matlab代码: clear; Fs=1000; n=0:1/Fs:1; xn=cos 3*cos randn); nfft=1024; window=boxcar); %矩形窗 noverlap=0; %数据无重叠 p=0.9; %置信概率 [Pxx,Pxxc]=psd; index=0:round; k=index*Fs/nfft; plot_Pxx=10*log10); plot_Pxxc=10*log10); figure plot; pause; figure plot; 2. Welch法 Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w,并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。 Matlab代码: clear; Fs=1000; n=0:1/Fs:1; xn=cos 3*cos randn); nfft=1024; window=boxcar; %矩形窗 window1=hamming; %汉明窗 window2=blackman; %blackman窗 noverlap=20; %数据无重叠 range='half'; %频率间隔为[0 Fs/2],只计算一半的频率 [Pxx,f]=pwelch; [Pxx1,f]=pwelch; [Pxx2,f]=pwelch; plot_Pxx=10*log10; plot_Pxx1=10*log10; plot_Pxx2=10*log10; figure plot; pause; figure plot; pause; figure plot; 复制代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值