机器学习模型一文通之——朴素贝叶斯

系列文章



从一个例子开始

现有如下西瓜:

编号色泽( X 1 X_1 X1根蒂( X 2 X_2 X2敲声( X 3 X_3 X3纹理( X 4 X_4 X4脐部( X 5 X_5 X5触感( X 6 X_6 X6好瓜( Y Y Y
1青绿蜷缩浊响清晰凹陷硬滑
2乌黑蜷缩沉闷清晰凹陷硬滑
3乌黑蜷缩浊响清晰凹陷硬滑
4青绿蜷缩沉闷清晰凹陷硬滑
5浅白蜷缩浊响清晰凹陷硬滑
6青绿稍蜷浊响清晰稍凹软粘
7乌黑稍蜷浊响稍糊稍凹软粘
8乌黑稍蜷浊响清晰稍凹硬滑
9乌黑稍蜷沉闷稍糊稍凹硬滑
10青绿硬挺清脆清晰平坦软粘
11浅白硬挺清脆模糊平坦硬滑
12浅白蜷缩浊响模糊平坦软粘
13青绿稍蜷浊响稍糊凹陷硬滑
14浅白稍蜷沉闷稍糊凹陷硬滑
15乌黑稍蜷浊响清晰稍凹软粘
16浅白蜷缩浊响模糊平坦硬滑
17青绿蜷缩沉闷稍糊稍凹硬滑

现有一西瓜特征为 青绿,稍蜷,浊响,清晰,凹陷,硬滑,判断该瓜是否为好瓜。
换一个说法,就是在已知上述数据分布下,分别求该瓜为好瓜的概率 P ( 好瓜 ∣ ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ) P(好瓜|(青绿,稍蜷,浊响,清晰,凹陷,硬滑)) P(好瓜(青绿,稍蜷,浊响,清晰,凹陷,硬滑)),分析到这里,需要先引入相关概率知识。


概率相关概念

联合概率: 包含多个事件并且所有事件同时成立的概率,例如对于事件A,B,联合概率记做 P ( A , B ) P(A,B) P(A,B)。对于不相关事件,其联合概率即为 P ( A , B ) = P ( A ) P ( B ) P(A,B)=P(A)P(B) P(A,B)=P(A)P(B);对于相关事件,即一个事件的发生会影响另一事件,则涉及到条件概率 P ( A , B ) = P ( A ) P ( B ∣ A ) P(A,B)=P(A)P(B|A) P(A,B)=P(A)P(BA) P ( B , A ) = P ( B ) P ( A ∣ B ) P(B,A)=P(B)P(A|B) P(B,A)=P(B)P(AB)
条件概率: 表示在一个事件发生的情况下,另一事件发生的概率。例如记事件A发生的概率为 P ( A ) P(A) P(A),事件B发生的概率为 P ( B ) P(B) P(B),则在B事件发生的情况下,A事件发生的概率即为条件概率,记为 P ( A ∣ B ) 。 P(A|B)。 P(AB)
先验概率: 基于统计的概率,基于以往历史经验或分析得到的结果,不依赖当前发生的事件。
后验概率: 是从条件概率而来,强调由果推因,是指在两个相关事件中,已经发生的事件(证据)下,另一事件发生的概率。
贝叶斯定理: 由相关事件的联合概率,又因为 P ( A , B ) = P ( B , A ) P(A,B)=P(B,A) P(A,B)=P(B,A),所以有 P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(A)P(B|A)=P(B)P(A|B) P(A)P(BA)=P(B)P(AB),即
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=\frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)这就是贝叶斯定理。从先验和后验的角度看,B称为证据,A称为事件,则

  • P ( A ∣ B ) P(A|B) P(AB)就是在证据B下,事件A发生的后验概率,有时候这是难以直接获得的。
  • P ( B ∣ A ) P(B|A) P(BA)是在事件A发生的情况下,出现证据B的条件概率,也称为似然。
  • P ( A ) P(A) P(A)称为先验概率,即事件A发生的概率。
  • P ( B ) P(B) P(B)则是无论事件A如何,出现证据B的概率。

完备事件组: 设一系列事件 { A 1 , A 2 , . . . , A n } \{A_1,A_2,...,A_n\} {A1,A2,...,An}构成样本空间 S S S中的一个完备事件组,那么有 A i ∩ A j = ∅ , i ≠ j A_i \cap A_j=\emptyset, i \neq j AiAj=,i=j,并且 A 1 ∩ . . . ∩ A n = S A_1 \cap ...\cap A_n=S A1...An=S。每次试验中完备事件组中有且仅有一个事件发生,完备事件组构成样本空间的一个划分。
全概率公式: 将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。例如 A 1 , A 2 , . . . , A n {A_1,A_2,...,A_n} A1,A2,...,An构成一个完备事件组,则对任一事件B有
P ( B ) = P ( B ∣ A 1 ) P ( A 1 ) + P ( B ∣ A 2 ) P ( A 2 ) + . . . + P ( B ∣ A n ) P ( A n ) = ∑ i = 1 n P ( B ∣ A i ) P ( A i ) P(B)=P(B|A_1)P(A_1)+P(B|A_2)P(A_2)+...+P(B|A_n)P(A_n)=\sum^{n}_{i=1}{P(B|A_i)P(A_i)} P(B)=P(BA1)P(A1)+P(BA2)P(A2)+...+P(BAn)P(An)=i=1nP(BAi)P(Ai)


回到例子

我们要求 P ( 好瓜 ∣ ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ) P(好瓜|(青绿,稍蜷,浊响,清晰,凹陷,硬滑)) P(好瓜(青绿,稍蜷,浊响,清晰,凹陷,硬滑)),由贝叶斯定理
P ( 好瓜 ∣ ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ) = P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 好瓜 ) P ( 好瓜 ) P ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) P(好瓜|(青绿,稍蜷,浊响,清晰,凹陷,硬滑))=\frac{P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|好瓜)P(好瓜)}{P(青绿,稍蜷,浊响,清晰,凹陷,硬滑)} P(好瓜(青绿,稍蜷,浊响,清晰,凹陷,硬滑))=P(青绿,稍蜷,浊响,清晰,凹陷,硬滑)P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)好瓜)P(好瓜)所以只要分别计算出 P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 好瓜 ) P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|好瓜) P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)好瓜) P ( 好瓜 ) P(好瓜) P(好瓜) P ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) P(青绿,稍蜷,浊响,清晰,凹陷,硬滑) P(青绿,稍蜷,浊响,清晰,凹陷,硬滑)就可以得到最终结果。
根据给出的数据,容易统计出先验概率 P ( 好瓜 ) = 8 / 17 P(好瓜)=8/17 P(好瓜)=8/17。而对于 P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 好瓜 ) P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|好瓜) P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)好瓜),自然地一个想法是在给出的数据中统计好西瓜中满足青绿,稍蜷,浊响,清晰,凹陷,硬滑特征的占比,但是这样的做法有两个问题:

  • 在特征较多,样本较少的情况下,由于数据的稀疏性,满足所有特征的样本可能很少甚至不存在,直接统计的结果不能真实地反应该联合概率。
  • 在一些领域中,获得大量的样本是相对困难的,而且当特征较多,样本量很大的情况下,统计工作也会变得十分复杂。

因此,朴素贝叶斯提出一个较强的假设,即各特征之间具有条件独立性,要注意的是这里的条件独立性指的是在某事件发生的情况下,特征之间具有独立性,在现实世界中,这一假设往往很难成立,这也是朴素贝叶斯中朴素一词的由来。在朴素贝叶斯下,有
P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 好瓜 ) = P ( 青绿 ∣ 好 ) P ( 稍蜷 ∣ 好 ) P ( 浊响 ∣ 好 ) P ( 清晰 ∣ 好 ) P ( 凹陷 ∣ 好 ) P ( 硬滑 ∣ 好 ) = 3 8 ∗ 3 8 ∗ 6 8 ∗ 7 8 ∗ 5 8 ∗ 6 8 = 2835 65536 \begin{aligned} P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|好瓜)&=P(青绿|好)P(稍蜷|好)P(浊响|好)P(清晰|好)P(凹陷|好)P(硬滑|好) \\ &=\frac{3}{8}*\frac{3}{8}*\frac{6}{8}*\frac{7}{8}*\frac{5}{8}*\frac{6}{8} \\ &=\frac{2835}{65536} \end{aligned} P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)好瓜)=P(青绿)P(稍蜷)P(浊响)P(清晰)P(凹陷)P(硬滑)=838386878586=655362835
对于概率 P ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) P(青绿,稍蜷,浊响,清晰,凹陷,硬滑) P(青绿,稍蜷,浊响,清晰,凹陷,硬滑),由于瓜的状态 { 好瓜,坏瓜 } \{好瓜,坏瓜\} {好瓜,坏瓜}构成完备事件集,根据全概率公式有
P ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) = P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 好 ) P ( 好 ) + P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 坏 ) P ( 坏 ) \begin{aligned} P(青绿,稍蜷,浊响,清晰,凹陷,硬滑)&=P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|好)P(好) \\ &+P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|坏)P(坏) \\ \end{aligned} P(青绿,稍蜷,浊响,清晰,凹陷,硬滑)=P((青绿,稍蜷,浊响,清晰,凹陷,硬滑))P()+P((青绿,稍蜷,浊响,清晰,凹陷,硬滑))P()
从而进行转化,根据朴素贝叶斯算法求解。
综上,我们可以计算
P ( ( 青绿 , 稍蜷 , 浊响 , 清晰 , 凹陷 , 硬滑 ) ∣ 好瓜 ) = 2835 65536 ∗ 8 17 2835 65536 ∗ 8 17 + 128 59049 ∗ 9 17 = 0.947 \begin{aligned} P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)|好瓜)&=\frac{\frac{2835}{65536}*\frac{8}{17}}{\frac{2835}{65536}*\frac{8}{17}+\frac{128}{59049}*\frac{9}{17}} \\ &=0.947 \end{aligned} P((青绿,稍蜷,浊响,清晰,凹陷,硬滑)好瓜)=655362835178+59049128179655362835178=0.947
结果大于0.5,因此该瓜为好瓜。


朴素贝叶斯

1. 多项式朴素贝叶斯

对于判断西瓜好坏问题,由于各特征在各类别下服从多项式分布,因此也称为多项式朴素贝叶斯

形式化

设有样本数据集 D = { d 1 , d 2 , . . . , d n } D=\{d_1,d_2,...,d_n\} D={d1,d2,...,dn},每个样本拥有多个特征构成特征属性集 X = { X 1 , X 2 , . . . , X k } X=\{X_1,X_2,...,X_k\} X={X1,X2,...,Xk},类变量为 Y = { y 1 , y 2 , . . . , y m } Y=\{y_1,y_2,...,y_m\} Y={y1,y2,...,ym},即样本共有 m m m个类别。由朴素贝叶斯算法,后验概率可以由先验概率 P ( Y ) P(Y) P(Y)、证据 P ( X ) P(X) P(X)和类条件概率 P ( X ∣ Y ) P(X|Y) P(XY)计算出:
P ( Y ∣ X ) = P ( Y ) P ( X ∣ Y ) P ( X ) P(Y|X)=\frac{P(Y)P(X|Y)}{P(X)} P(YX)=P(X)P(Y)P(XY)因为朴素贝叶斯假设各特征之间条件独立,则在给定类别为 y y y的情况下,上式可以表示为
P ( X ∣ Y = y ) = ∏ i = 1 k P ( X i ∣ Y = y ) P(X|Y=y)=\prod_{i=1}^{k}{P(X_i|Y=y)} P(XY=y)=i=1kP(XiY=y)对于条件概率 P ( X i ∣ Y = y ) P(X_i|Y=y) P(XiY=y),其中特征 X i X_i Xi可能有多个具体的特征取值,对于特定特征值 X i = x X_i=x Xi=x,通过直接统计频率来估计条件概率:
P ( X i = x ∣ Y = y ) = c o u n t ( y i = = y , X i = = x ) + λ c o u n t ( y i = = y ) + m λ P(X_i=x|Y=y)=\frac{count(y_i==y,X_i==x)+\lambda}{count(y_i==y)+m\lambda} P(Xi=xY=y)=count(yi==y)+count(yi==y,Xi==x)+λ其中 m m m为特征 X i X_i Xi中的特征数量, λ \lambda λ为平滑系数,这是为了防止某特征样本数为0时会导致整个概率为0。当 λ \lambda λ为1时,即为拉普拉斯平滑,当 λ < 1 \lambda<1 λ<1时则称为利德斯通平滑
可得后验概率为:
P ( Y ∣ X ) = P ( y ) ∏ i = 1 k P ( x i ∣ Y ) P ( X ) P(Y|X)=\frac{P(y)\prod_{i=1}^{k}{P(x_i|Y)}}{P(X)} P(YX)=P(X)P(y)i=1kP(xiY)即有对一个样本数据属于类别 y i y_i yi的朴素贝叶斯计算公式如下:
P ( y i ∣ x 1 , x 2 , . . . , x k ) = p ( y i ) ∏ j = 1 k P ( x j ∣ y i ) ∏ j = 1 k P ( x j ) P(y_i|x_1,x_2,...,x_k)=\frac{p(y_i)\prod_{j=1}^{k}P(x_j|y_i)}{\prod_{j=1}^{k}P(x_j)} P(yix1,x2,...,xk)=j=1kP(xj)p(yi)j=1kP(xjyi)

2. 伯努利朴素贝叶斯

假设数据服从伯努利分布,即特征都是二值变量 { 1 , 0 } \{1,0\} {1,0},或者可以通过二值化转换为二值变量。则条件概率为
P ( X i = 1 ∣ Y = y ) = c o u n t ( y i = = y , X i = = 1 ) + λ c o u n t ( y i = = y ) + 2 λ P(X_i=1|Y=y)=\frac{count(y_i==y,X_i==1)+\lambda}{count(y_i==y)+2\lambda} P(Xi=1∣Y=y)=count(yi==y)+2λcount(yi==y,Xi==1)+λ其中同样使用平滑系数处理零值。

3. 高斯朴素贝叶斯

在上文列举的例子中,西瓜的各项特征都是离散型变量, 可以直接通过统计频率来估计概率。那么当特征为连续型变量时,例如身高、温度等,就无法直接通过频率估计概率。

形式化

先验分布 P ( Y ) P(Y) P(Y)的估计不变,重点是条件概率 P ( X i = x ∣ Y = y ) P(X_i=x|Y=y) P(Xi=xY=y)的估计。由于X为连续型变量,所以对该连续型变量作出假设 P ( X i ∣ Y = y ) ∼ N ( μ , σ 2 ) P(X_i|Y=y)\sim N(\mu,\sigma^{2}) P(XiY=y)N(μ,σ2),即服从正态分布。则条件概率可用高斯概率密度函数来表示:
P ( X i = x ∣ Y = y ) = 1 2 π σ i j 2 e − ( x i − μ i j ) 2 2 σ i j 2 P(X_i=x|Y=y)=\frac{1}{\sqrt{2\pi}\sigma_{ij}^{2}}e^{- \frac{(x_i-\mu_{ij})^2}{2\sigma_{ij}{2}}} P(Xi=xY=y)=2π σij21e2σij2(xiμij)2其中 μ i j \mu_{ij} μij σ i j \sigma_{ij} σij表示在类 y i y_i yi下特征 x i x_i xi的高斯分布参数。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值