AD(阿尔茨海默病)诊断初解

本篇博文主要参考来源于太原理工大学硕士研究生秦嘉玮的硕士学位论文《MRI 结构特征选择方法及 AD 早期诊断的应用研究》,也是博主的AD第一篇学习论文。在本文中主要介绍AD诊断的背景及其特征选择方法。

  1. AD诊断的背景
  2. 特征选择的基础理论
  3. 启发式搜索特征选择模型
  4. MRI数据预处理

写了这篇论文笔记之后我再也不会写学位论文笔记了,简直是太长了,要写就写他对应的学术论文的笔记了,这样创新点比较容易get,只用写结构和它的创新点就行了!不然还得分析一大堆!

AD的背景及其研究现状

阿尔茨海默病(Alzheimer’s Disease,AD),又称老年痴呆症,这种疾病会影响患者的记忆力、理解力、认知能力等等,给家庭和社会带来很大负担,而且病因和发病机制还不明确,目前没有有效的治疗方法。轻度认知障碍(Mild Cognitive Impairment,MCI)是 AD 的早期过程。有研究发现对 MCI 患者或者早期 AD 患者进行药物干预,可以改善症状、缓解病情。因此,对 MCI、AD 患者的早期诊断显得尤为重要。
核磁共振成像是常用的一种 MCI、AD 诊断技术,但受到技术限制,MCI、AD 的MRI 图像目前还主要依靠医生经验人工判断,尚未实现自动诊断。如何实现 MCI、AD的自动诊断是计算机、人工智能、医学影像等相关领域的研究热点之一。通过对 MRI图像的深入研究,挖掘其包含的有用信息,可以得到灰质体积、白质容积、脑脊液容积等大量的脑结构信息。那么,如何将这些特征运用到 MCI、AD 的分类研究中就成了提高其诊断准确率的关键。

由于脑部结构比较复杂,对于需要的特征进行选择这是研究的重点,也是难点。特征有“无关特征”(与当前学习任务无关)和“冗余特征”(所包含的信息可以从其他特征推演出来)!对于已知类型的样本进行特征选择无外乎以下几种:基于错误率进行选择,根据分类器的错误率从原始特征中选择数目固定的特征子集,错误率最小的特征即为最优特征子集;基于维度进行特征选择,即规定一个分类器的错误率,从原始特征中选择维度最小的特征子集;在二者之间做一个折中,考虑错误率和特征维度两方面因素。

近年来,特征选择算法的研究飞速发展,其关键在于研究特征选择与特征提取相融合的特征选择算法、筛选出分类效果最优的特征子集以及研究如何将 Filter 过滤式模型和 Wrapper 封装式模型(下一节介绍这2个模型)更好融合这三方面。

阿尔茨海默病(Alzheimer's Disease, AD)是一种神经退行性疾病,其诊断通常基于临床症状、认知评估和生物标志物检测。Jupyter Notebook是一种流行的交互式计算环境,常用于数据分析、机器学习和科学计算。在研究阿尔茨海默病诊断模型时,你可能会使用Python等编程语言,并结合相关的库如scikit-learn、TensorFlow或PyTorch来构建和训练诊断模型。 以下是一个简单的示例,展示如何使用Python和scikit-learn库创建一个基于机器学习的AD诊断模型: ```python # 导入必要的库 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix # 假设你已经有了一个名为data.csv的数据集,包含特征(如MRI影像数据、生化指标等)和标签(AD或正常) data = pd.read_csv('data.csv') X = data.drop('diagnosis', axis=1) # 特征 y = data['diagnosis'] # 标签 # 数据预处理(标准化) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) # 用逻辑回归作为简单模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test) # 评估模型性能 accuracy = accuracy_score(y_test, y_pred) conf_mat = confusion_matrix(y_test, y_pred) # 打印结果 print(f"Accuracy: {accuracy}") print("Confusion Matrix:") print(conf_mat) ``` 这只是一个基本的示例,实际研究可能涉及更复杂的深度学习模型(如卷积神经网络CNN或递归神经网络RNN),以及更多数据处理步骤(如特征选择、特征工程和模型调优)。如果你对具体的Jupyter代码实现或者相关研究方法有更详细的问题,请继续提问。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值