- 博客(10)
- 收藏
- 关注
原创 网易深度学习实习生笔试题加面试
记录一下,一共四道题,笔试一共A出来一道题,那个第二张图片感觉和CTC算法很相关,但是没有写出来,第四张图思路是想把所有的和求出来,然后再判断条件,取最大,最后时间超出了,好像是需要用什么同余定理才能做出来。最后有两道简答题还挺简单,第一道是问为什么CNN用来做图像处理,RNN用来做文本识别。第二道就是问激活函数有哪些,然后有什么区别,总体来说还是算法题比较难...
2021-05-08 19:32:19 344 2
原创 pytorch raise RuntimeError(‘Error(s) in loading state_dict for {}:\n\t{}‘.format
在训练模型的时候,需要搞清楚有没有用多GPU训练使用pytorch正常加载模型的话:model.load_state_dict(torch.load(model_path))如果在训练的时候使用到了多GPU训练model = torch.nn.DataParallel(model, device_ids=range(opt.ngpu))如果是这样的话,加载模型需要model.load_state_dict({k.replace('module.',''):v for k,v in torch
2021-04-28 10:55:42 3683
原创 四个点排序
import os#排序将四个按照左上,右上,右下,左下的方式排序,其中leftup和left_up的区别是,其中一个为2个坐标的标签,另外一个是从四个标签里面提出来的def sort_number(): # a='00205459770115-90_85-352&516_448&547-444&547_368&549_364&517_440&515-0_0_22_10_26_29_24-128-7.jpg' p = "./data/w
2021-04-26 15:30:26 410 1
原创 leedcode 删除数组中的重复元素
给你一个有序数组 nums ,请你原地删除重复出现的元素,使每个元素只出现一次 ,返回删除后数组的新长度。不要使用额外的数组空间,你必须在原地修改输入数组 并在使用 O(1) 额外空间的条件下完成。说明为什么返回数值是整数,但输出的答案是数组呢?请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。你可以想象内部操作如下:// nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝int len = removeDuplicates(nums);/
2021-04-12 11:10:52 96
原创 pytorch中torch.ger的用法
在pytorch1.7版本之后,torch.ger就被torch.outer所代替了下面展示一些 torch.ger。// An highlighted block>>> import torch>>> v1 = torch.arange(1., 5.)>>> v2 = torch.arange(1., 4.)>>> torch.outer(v1, v2)tensor([[ 1., 2., 3.], .
2021-03-12 19:14:15 2924
原创 CCPD车牌数据裁剪处理
CCPD数据集这个数据集十分之大,大概有30W张车牌图片,是在合肥这座城市进行的数据采集。我们根据文件的标签把车牌图片裁剪出来,以便于后面的CRNN训练。那么我们来看一下数据的标签 ,以025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg为例这一长串的图片名其中包含了车牌图片025代表车牌图片占整个图片的比例154&38
2021-03-02 00:37:05 3323 11
原创 一周啃下Faster-RCNN的模型解读
simple Faster RCNN github地址使用简易版的(一)论文总结 https://www.cnblogs.com/kerwins-AC/p/9651352.html(二)数据预处理 https://www.cnblogs.com/kerwins-AC/p/9734381.html(三)模型准备 https://www.cnblogs.com/kerwins-AC/p/9752679.html(四)模型训练 https://www.cnblogs.com/kerwins-AC/p/9
2021-01-16 15:50:32 153
转载 独热编码的作用
一、One-Hot EncodingOne-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。在实际的机器学习的应用任务中,特征有时候并不总是连续值,有可能是一些分类值,如性别可分为“male”和“female”。在机器学习任务中,对于这样的特征,通常我们需要对其进行特征数字化,如下面的例子:有如下三个特征属性:1.性别:[“male”,“female”]2.地区:[“Europe”,“US”,“Asia”]3
2021-01-13 14:42:01 1033 1
原创 车牌识别综述
车牌识别(综述)阅读笔记目前车牌识别所遇到的难点主要体现在三个方面,主要体现在:车牌倾斜,图像噪声,还有车牌模糊。目前对车牌识别的方法大致可以分为三类,模板匹配,SVM,和深度学习的方法,其中,深度学习的方法用的更加广泛,深度学习上采用车牌识别的方法可分为直接检测算法和间接检测算法。对于车牌识别,有着不同的数据集,我们需要对不同公共数据集进行比较和说明,然后对针对不同的数据集,工作站,精度和时间进行比较,这样才能全面的衡量算法的优势和劣势,然后再对未来研究方向进行展望。模板匹配:基于matlab+模
2021-01-11 16:14:33 2852
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人