SMA2:代码实现详解——Image Encoder篇(Hiera章)

SMA2:代码实现详解——Image Encoder篇(Hiera)

写在前面

大家在SMA2:代码实现详解——Image Encoder篇(FpnNeck)下的留言我已收到,感谢大家的支持,后面如果遇到比较难以讲清的部分可能会使用视频的形式。博主最近要准备秋招,更新可能会慢许多,希望大家能谅解。

言归正传,在SMA2:代码实现详解——Image Encoder篇(FpnNeck)中,我们已经知道了SMA2的整体架构,并且介绍了Image Encoder组件中的FpnNeck。这一篇博客我们就来详细介绍Image Encoder的基本骨架backbone——Hiera

Hiera介绍

Hiera是文章Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles中提出的一种分层视觉Transformer架构。它不仅可以处理图像,而且这个架构可以应用于视频。Hiera是一个纯粹的简单分层ViT模型,不存在任何卷积、移位或者十字窗口操作,仅有Transformer结构组件。它比之前跨多个模型大小、领域和任务的工作更快、更准确。
在这里插入图片描述

Hiera与MAE(Masked AutoEncoder)

MAE(Masked AutoEncoder, 掩码自编码器)

图像MAE由论文Masked Autoencoders Are Scalable Vision Learners提出,它表明,MAE是计算机视觉的可扩展自监督学习器。方法非常简单:屏蔽输入图像的随机Patch并重建丢失的像素。它基于两个核心设计。首先,作者开发了一种非对称编码器-解码器架构,其中的编码器仅对Patch的可见子集(没有掩码标记)进行操作,而轻量级解码器可根据潜在表示和掩码标记重建原始图像。作者发现屏蔽高比例的输入图像(例如 75%)会产生一项不简单且有意义的自我监督任务。将这两种设计结合起来能够高效且有效地训练大型模型:加速训练(3 倍或更多)并提高准确性。可扩展方法允许学习泛化良好的高容量模型:例如,在仅使用 ImageNet-1K 数据的方法中,普通 ViT-Huge 模型实现了最佳准确率 (87.8%)。下游任务中的传输性能优于监督预训练,并显示出有希望的扩展行为。

Hiera便使用了MAE的方式进行训练。

Hiera架构

在这里插入图片描述

选择使用像MAE(如图所示)这样的强代理任务(pretext task)来教导模型。 Hiera完全由标准ViT块组成。为了提高效率,在前两个阶段使用“掩模单元”内的局部注意力,其余阶段使用全局注意力(Global Attention)。在每个阶段转换中,Q和跳跃连接的特征通过线性层加倍,空间维度通过2×2最大池池化。

SMA2中Hiera(HieraDet)的实现

class Hiera(nn.Module):
    """
    Reference: https://arxiv.org/abs/2306.00989
    """

    def __init__(self, ...):
        ...
        self.blocks = nn.ModuleList()

        for i in range(depth):
            dim_out = embed_dim
            ...
            block = MultiScaleBlock(
                dim=embed_dim,
                dim_out=dim_out,
                num_heads=num_heads,
                drop_path=dpr[i],
                q_stride=self.q_stride if i in self.q_pool_blocks else None,
                window_size=window_size,
            )
            embed_dim = dim_out
            self.blocks.append(block)

    def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
        h, w = hw
        window_embed = self.pos_embed_window
        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
        pos_embed = pos_embed + window_embed.tile(
            [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
        )
        pos_embed = pos_embed.permute(0, 2, 3, 1)
        return pos_embed

    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
        x = self.patch_embed(x)
        # x: (B, H, W, C)

        # Add pos embed
        x = x + self._get_pos_embed(x.shape[1:3])

        outputs = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if (i == self.stage_ends[-1]) or (
                i in self.stage_ends and self.return_interm_layers
            ):
                feats = x.permute(0, 3, 1, 2)
                outputs.append(feats)

        return outputs

首先,Hiera先将图片划分并映射为patch嵌入向量(上述代码35行),然后计算位置信息并相加(代码第39行)。值得注意的是,SMA2在实现Hiera中位置嵌入时,参照了Window Attention is Bugged: How not to Interpolate Position Embeddings一文,他们发现在使用窗口注意力的同时插值位置嵌入是错误的。Hiera和ViTDet两者确实都存在此错误。于是作者提出了一种简单的绝对窗口位置嵌入策略,它彻底解决了Hiera中的错误,并提高了ViTDet中模型的速度和性能。

代码的41-48行实际上就是Hiera主体ViT块的处理,值得关注的只有带有Q pooling的ViT块,这是在MultiScaleBlock中实现的。

class PatchEmbed(nn.Module):
    """
    Image to Patch Embedding.
    """

    def __init__(
        self,
        kernel_size: Tuple[int, ...] = (7, 7),
        stride: Tuple[int, ...] = (4, 4),
        padding: Tuple[int, ...] = (3, 3),
        in_chans: int = 3,
        embed_dim: int = 768,
    ):
        """
        Args:
            kernel_size (Tuple): kernel size of the projection layer.
            stride (Tuple): stride of the projection layer.
            padding (Tuple): padding size of the projection layer.
            in_chans (int): Number of input image channels.
            embed_dim (int):  embed_dim (int): Patch embedding dimension.
        """
        super().__init__()
        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        return x

PatchEmbed模块将图片的形状(B,C,H,W)转化为更常见的适用于Transformer处理的形状(B, H, W, C),因为后面经过VIT块时会要求(B,L,C)的形式。实际上,这个模块的卷积映射继承了ViT的做法,直接利用了卷积的特性,通过指定Kernel_size与strides隐式划分了窗口,并且完成了线性变换得到patch enmbedding

值得注意的是位置嵌入的计算:

class Hiera(nn.Module):
 
    def __init__(...)
        super().__init__()
        ...
        self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
        self.pos_embed = nn.Parameter(
            torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
        )
        self.pos_embed_window = nn.Parameter(
            torch
[编辑本段]Turbo C2.0    介绍      Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。    基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 [编辑本段]Turbo C 2.0的主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)    Turbo C++ 3.0   “Turbo C++ 3.0”软件是Borland公司在1992年推出的强大的——C语言程序设计与C++面向对象程序设计 的集成开发工具。它只需要修改一个设置选项,就能够在同一个IDE集成开发环境下设计和编译以标准 C 和 C++ 语法设计的程序文件。 [编辑本段]C 语言   C语言起始于1968年发表的CPL语言,它的许多重要思想都来自于Martin Richards在1969年研制的BCPL语言,以及以BCPL语言为基础的与Ken Thompson在1970年研制的B语言。Ken Thompson用B语言写了第一个UNIX操作系统。M.M.Ritchie1972年在B语言的基础上研制了C语言,并用C语言写成了第一个在PDP-11计算机上研制的UNIX操作系统。1977年出现了独立于极其的C语言编译文本《看移植C语言编译程序》,从而大大简化了把C语言编译程序移植到新环境中所做的工作,这本身也就使UNIX的日益广泛使用,C语言也迅速得到推广。   1983年美国国家标准化协会(ANSI)根据C语言问世以来的各种版本,对C语言的发展和扩充制定了新的标准,成为ANSI C。1987年ANSI又公布了新标准————87ANSI C。   目前在微型计算机上使用的有Microsoft C、Quick C、Turbo C等多种版本。这些不同的C语言版本,基本部分是相同的,但是在有关规定上有略有差异。   C 语言发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大的功能。许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都是由C 语言编写的。用C 语言加上一些汇编语言子程序, 就更能显示C 语言的优势了,象PC- DOS ,WORDSTAR等就是用这种方法编写的。归纳起来C 语言具有下列特点:   1. C是中级语言   它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可以象汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工作单元。   2. C是结构式语言   结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必要的信息交流外彼此独立。这种结构化方式可使程序层次清晰, 便于使用、维护以及调试。C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循环、条件语句控制程序流向, 从而使程序完全结构化。   3. C语言功能齐全   C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更高。另外C 语言也具有强大的图形功能, 支持多种显示器和驱动器。而且计算功能、逻辑判断功能也比较强大, 可以实现决策目的。   4. C语言适用范围大   C 语言还有一个突出的优点就是适合于多种操作系统, 如DOS、UNIX,也适用于多种机型。   C语言的优点很多,但是也存在一些缺点,如运算优先级太多,运算能力方面不像其它高级语言那样强,语法定义不严格等。但是这些都不能阻止C语言成为一门广受欢迎的计算机编程语言
Turbo C2.0 介绍   Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。 基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)
### 回答1: 在 TURBO C 2.0 中,您可以使用 biosdisk() 函数来格式化软盘。 下面是一段代码示例: ``` #include <stdio.h> #include <dos.h> int main() { // 定义扇区的大小 unsigned int sector_size[3] = {512, 512, 1024}; // 定义填充字节 unsigned char fill_char[3] = {0xF6, 0xF6, 0x48}; // 格式化磁道 700 的前三个扇区 for (int i = 0; i < 3; i++) { int result = biosdisk(2, 0, 70, 0, i + 1, 1, sector_size[i], fill_char[i]); if (result != 0) { printf("格式化扇区 %d 失败,返回码: %d\n", i + 1, result); } } return 0; } ``` 请注意,在使用 biosdisk() 函数之前,需要包含 dos.h 头文件。 希望这能帮到您! ### 回答2使用TURBO C 2.0语言,可以通过以下代码格式化软盘的70磁道0面,并分别格式化3个扇区,大小分别为512字节、512字节和1024字节。其中,前两个扇区使用F6填充,第三个扇区使用48填充。 ```c #include<stdlib.h> #include<stdio.h> #include<dos.h> void formatFloppyDisk(){ union REGS regs; regs.h.ah = 0x0;// To format a floppy disk, we set AH=0 regs.h.dl = 0;// Drive number (0=A, 1=B, etc.) regs.x.cx = 0;// Track number to format regs.h.dh = 0;// Head number regs.h.al = 0;// Sector size (0=default, 1=512 bytes, 2=1024 bytes, 3=2048 bytes etc.) int FILL_BYTE = 0;// The byte value to fill the sectors with during formatting int NUM_SECTORS = 3;// Number of sectors to format // To format 70th track 0th head regs.x.ax = 0x1301; // 0x13 = Reset disk system, 01H = Reset only specified drive int86(0x13, &regs, &regs); // BIOS interrupt to reset disk system for (int i=0; i<NUM_SECTORS; i++){ regs.x.ax = 0x3101; // 0x31 = Write Format, 01H = Format only current track regs.x.bx = 0x0001; // 0x00 = Drive A:, 01H = Head 1, 0 = Generate ID Field depending on the disk in the drive 1 = Keep the ID Field all zeros regs.x.cx = 0x0170; // Track number=70(0-79 range) regs.h.dh = 0x00; // Head number=0 or 1 regs.h.al = 0x02; // Control byte=always zero regs.x.dx = i+1; // Sector number starting from 1 regs.x.si = 0x0000; // segment and offset of read/write buffer regs.x.di = 0x0000; // segment and offset of result if(i == 2){ FILL_BYTE = 0x48; // Fill the third sector with 48 regs.x.ax = 0x3102; // 0x31 = Write Format, 02H = Format sequential tracks immediately following the one being formatted }else{ FILL_BYTE = 0xF6; // Fill the first two sectors with F6 } regs.h.ah = FILL_BYTE; // Fill the sector with specified byte int86(0x13, &regs, &regs); // BIOS interrupt to format the specified sector } } int main(){ formatFloppyDisk(); return 0; } ``` 上述代码使用了INT 0x13,即BIOS中断服务例程,来执行软盘格式化操作。通过设置寄存器的不同参数,可以指定要格式化的磁道、面、扇区大小和填充字节。在这个例子中,我们格式化了软盘70磁道0面的3个扇区,前两个扇区使用F6填充,第三个扇区使用48填充。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值