计蒜客 等差数列

一个等差数列是一个能表示成 a, a+b, a+2b,…, a+nb (n=0,1,2,3,…)a,a+b,a+2b,…,a+nb(n=0,1,2,3,…) 的数列。

在这个问题中 aa 是一个非负的整数,bb 是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成 p^2+q^2p
2
+q
2
的数的集合) SS 中长度为 nn 的等差数列。

输入格式

输入包括两行,第一行为 N(3 \leq N \leq 25)N(3≤N≤25) 要找的等差数列的长度。第二行是找到的双平方数 pp 和 qq 的上界 M(0 \leq p,q \leq M)M(0≤p,q≤M)。

输出格式

输出一行或者多行,如果没有找到数列,输出NONE。否则输出一个整数对a b(这些行应该先按 bb 排序再按 aa 排序)

样例输入

5
7
样例输出

1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24

#include<stdio.h>
#include<string.h>
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    int index=0,d=m*m*2/(n-1)+1,num=0;
    int *pi = new int[m*m*2+3];
    int *pj = new int[m*m*2+3];
    memset(pi,0,sizeof(int)*(m*m*2+3));
    memset(pj,0,sizeof(int)*(m*m*2+3));
    for(int i=0;i<=m;i++){
        for(int j=i;j<=m;j++)
            pi[j*j+i*i]=1;
    }
    for(int i=0;i<=m*m*2;i++){
        if(pi[i]) pj[index++]=i;
    }
    for(int k=1;k<=d;k++){
        for(int i=0;pj[i]+(n-1)*k<=m*m*2&&i<index;i++){
                bool f = true;
            for(int j=1;j<n&&f;j++){
                if(!pi[pj[i]+j*k]) f=false;
            }
        if(f){
            printf("%d %d\n",pj[i],k);
            num++;
        }
        }
    }
    if(!num) printf("NONE\n");
    delete[] pj;
    delete[] pi;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值