一个等差数列是一个能表示成 a, a+b, a+2b,…, a+nb (n=0,1,2,3,…)a,a+b,a+2b,…,a+nb(n=0,1,2,3,…) 的数列。
在这个问题中 aa 是一个非负的整数,bb 是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成 p^2+q^2p
2
+q
2
的数的集合) SS 中长度为 nn 的等差数列。
输入格式
输入包括两行,第一行为 N(3 \leq N \leq 25)N(3≤N≤25) 要找的等差数列的长度。第二行是找到的双平方数 pp 和 qq 的上界 M(0 \leq p,q \leq M)M(0≤p,q≤M)。
输出格式
输出一行或者多行,如果没有找到数列,输出NONE。否则输出一个整数对a b(这些行应该先按 bb 排序再按 aa 排序)
样例输入
5
7
样例输出
1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24
#include<stdio.h>
#include<string.h>
int main()
{
int n,m;
scanf("%d%d",&n,&m);
int index=0,d=m*m*2/(n-1)+1,num=0;
int *pi = new int[m*m*2+3];
int *pj = new int[m*m*2+3];
memset(pi,0,sizeof(int)*(m*m*2+3));
memset(pj,0,sizeof(int)*(m*m*2+3));
for(int i=0;i<=m;i++){
for(int j=i;j<=m;j++)
pi[j*j+i*i]=1;
}
for(int i=0;i<=m*m*2;i++){
if(pi[i]) pj[index++]=i;
}
for(int k=1;k<=d;k++){
for(int i=0;pj[i]+(n-1)*k<=m*m*2&&i<index;i++){
bool f = true;
for(int j=1;j<n&&f;j++){
if(!pi[pj[i]+j*k]) f=false;
}
if(f){
printf("%d %d\n",pj[i],k);
num++;
}
}
}
if(!num) printf("NONE\n");
delete[] pj;
delete[] pi;
return 0;
}