最长上升子序列的问题解法有两种,方法一是很好理解的dp,方法二则类似于二分,下面两种都来解释一下。
方法一:(动态规划)
dp(i)表示以i结尾的最长上升子序列的长度。那么很好写出递推方程。详见代码。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int dp[1010];
int a[1010];
int len;
int main()
{
scanf("%d", &len);
memset(dp, 0, sizeof(dp));
memset(a , 0, sizeof(a)) ;
for(int i=0; i<len; i++)
{
scanf("%d", &a[i]);
}
for(int i=0; i<len; i++) dp[i] = 1; // 刚开始最少长度是1
for(int i=1; i<len; i++)
{
for(int j=0; j<i; j++)
{
if(a[i] > a[j]) // 如果求最长不下降子序列,就要改成 >= .
dp[i] = max(dp[i], dp[j]+1);
}
}
cout << *max_element(dp,dp+len) <<endl;
return 0;
}
方法二:类似于二分
借鉴某大神的解释:
在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
这里说的很详细了,连我都明白了。
上代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int d[1010];
int a[1010];
int len;
int k;
int erfen(int x)
{
int left = 0;
int right = k;
while(left < right)
{
int mid = (left + right) / 2;
if(d[mid] >= x) right = mid;
else left = mid + 1;
}
return left;
}
int main()
{
scanf("%d", &len);
for(int i=0; i<len; i++)
{
scanf("%d", &a[i]);
}
k = 0; //
d[0] = a[0]; // 这里d[k] 表示长度为k+1的子序列的最小末尾元素
for(int i=1; i<len; i++)
{
if(a[i] > d[k])
d[++k] = a[i];
else
{
int pos = erfen(a[i]); // 二分查找.
d[pos] = a[i];
}
}
cout << k+1 << endl;
return 0;
}
其实这里二分查找有两种选择。
stl中的两种二分查找。
这两种二分查找,可分别用于求最长上升子序列和最长不下降子序列。
可以自己琢磨一下。