最长上升子序列问题(LIS)

最长上升子序列的问题解法有两种,方法一是很好理解的dp,方法二则类似于二分,下面两种都来解释一下。


方法一:(动态规划)

dp(i)表示以i结尾的最长上升子序列的长度。那么很好写出递推方程。详见代码。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;

int dp[1010];
int a[1010];
int len;
int main()
{
    scanf("%d", &len);
    memset(dp, 0, sizeof(dp));
    memset(a , 0, sizeof(a)) ;
    for(int i=0; i<len; i++)
    {
        scanf("%d", &a[i]);
    }

    for(int i=0; i<len; i++) dp[i] = 1; // 刚开始最少长度是1

    for(int i=1; i<len; i++)
    {
        for(int j=0; j<i; j++)
        {
            if(a[i] > a[j]) // 如果求最长不下降子序列,就要改成 >= .
                dp[i] = max(dp[i], dp[j]+1);
        }
    }

    cout << *max_element(dp,dp+len) <<endl;
    return 0;
}
方法二:类似于二分

借鉴某大神的解释:

在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

这里说的很详细了,连我都明白了。

上代码:


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;

int d[1010];
int a[1010];
int len;
int k;

int erfen(int x)
{
    int left = 0;
    int right = k;
    while(left < right)
    {
        int mid = (left + right) / 2;
        if(d[mid] >= x) right = mid;
        else left = mid + 1;
    }
    return left;
}
int main()
{
    scanf("%d", &len);
    
    for(int i=0; i<len; i++)
    {
        scanf("%d", &a[i]);
    }

    k = 0;  //
    d[0] = a[0];  // 这里d[k] 表示长度为k+1的子序列的最小末尾元素
    for(int i=1; i<len; i++)
    {
        if(a[i] > d[k])
            d[++k] = a[i];
        else
         {
           int pos = erfen(a[i]); // 二分查找.
           d[pos] = a[i];
         }
    }
    cout << k+1 << endl;
    return 0;
}
其实这里二分查找有两种选择。

stl中的两种二分查找。


这两种二分查找,可分别用于求最长上升子序列和最长不下降子序列。

可以自己琢磨一下。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值