
Computer Vision
计算机视觉,一个与机器学习紧密结合的领域
悲恋花丶无心之人
计算机视觉在读研究生,熟悉Pytorch,MXNet,TensorFlow,Keras等深度学习框架,主要涉及的领域有目标检测,语义分割,超分辨率重建,行人重识别等。
个人GitHub网址为:https://github.com/nickhuang1996
-
原创 Python cv2读取/存储图片中含中文路径失败的解决方法
目录一、问题二、代码一、问题cv2对于中文路径的图片读取值为None,可以采用cv2.imdecode和np.fromfile来读取,以避免中文路径的问题;cv2对于中文路径的图片存储失败,可以采用cv2.imencode和tofile来存储,以避免中文路径的问题;二、代码 """Load image""" img_np = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), -1) """Save2020-11-13 19:48:00308
1
-
原创 OpenCV 生成水墨质感的图片 黑暗之魂三 只狼:影逝二度
目录一、原图图片和效果图二、具体步骤三、完整代码四、生成的其他效果图五、总结一、原图图片和效果图黑白版彩色版二、具体步骤导入库# -*- coding: UTF-8 -*-import cv2import numpy as np读取图片,灰度图,因此第二参数为0(1则表示彩色图)# 读取图片img = cv2.imread('img.jpg', 0)保存灰度图# 显示并保存图片cv2.imshow('gray', im..2020-10-16 18:52:474797
13
-
原创 各种深度学习框架实现猫狗大战
目录不同深度学习框架下的实现教程/github地址1.Pytorch2.TensorFlow3.Keras4.MXNet不同深度学习框架下的实现教程/github地址(好用的话记得star噢)1.Pytorch一个教程和项目地址,代码需要自己建立项目,或者从github上下载PyTorch 入门实战(五)——2013kaggle比赛 猫狗大战的实现htt...2019-12-21 15:43:245159
3
-
翻译 DCGAN 论文翻译
博主相关代码实现链接:利用Pytorch和TensorFlow分别实现DCGAN生成动漫头像Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks摘要近年来,使用卷积神经网络的监督学习被大量应用于计算机视觉应用中。相对地,使用卷积神经网络的非监督学习则被较少...2019-04-17 14:26:083135
0
-
原创 RCAN 论文笔记
Image Super-Resolution Using Very Deep Residual Channel Attention Networks使用非常深的残差通道注意力网络的图像超分辨率项目地址:https://github.com/yulunzhang/RCAN目录一、提出CNN的不足二、解决的方法三、RCAN(残差通道注意网络)四、损失函数五、RIR(残差...2019-04-22 15:15:554562
0
-
原创 虚拟机Ubuntu 16.04 64位 Caffe 训练LeNet 数据集MNIST
目录一、准备工作二、训练模型三、训练期间的显示信息一、准备工作1.准备数据集之前请先切换到root模式,具体指令为:sudo su然后输入自己设定的密码2.准备数据集,具体指令为:cd caffe/./data/mnist/get_mnist.sh./examples/mnist/create_mnist.sh二、训练模型1.因为下载的训练参数默...2018-02-24 14:01:291681
0
-
原创 3DASR 论文笔记
目录一、关注点二、做出的贡献三、3D物体纹理呈现的问题和相关方法的不足四、图像生成模型五、3D物体外观的超分辨率数据集——3DASR六、基于学习的方法七、实验结果八、总结一、关注点1.多个视点捕获对象的研究情况很少。2.3D对象外观的数据集很少。3.高质量的3D技术已经应用于电影制作,视频游戏和数字文化遗产保护等领域。然而使用这种技术将图像重新投影到...2019-04-27 22:09:251649
0
-
原创 Julia 基于Flux深度学习框架的cifar10数据集分类
目录一、安装Julia二、Flux简介三、安装Flux和相关依赖库四、cifar10项目下载*五、cifar10数据集下载六、开始训练一、安装JuliaIDE是Atom,安装和使用教程为:Windows10 Atom安装和运行Julia的使用教程(详细)二、Flux简介1.Flux.jl是一个内置于Julia的机器学习框架。它与PyTorch有一些相似之处,...2019-04-24 20:24:573018
1
-
原创 PASSRnet 论文笔记
Learning Parallax Attention for Stereo Image Super-Resolution目录一、关注点二、贡献三、表现四、常用SR方法在解决立体图像SR的不足和局限性五、PASSRnet具体流程六、PASSRnet体系结构图七、残差空洞空间金字塔池化(ASPP)八、视差注意模块(PAM)九、左右一致性和周期一...2019-04-29 16:30:391948
1
-
转载 基于深度学习的行人重识别研究综述 罗浩.ZJU
转载自:https://zhuanlan.zhihu.com/p/31921944前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到...2019-04-30 13:02:582024
3
-
原创 FEQE 论文笔记
项目地址:https://github.com/thangvubk/FEQE.git目录一、简述二、需要解决的问题三、移动设备的计算机视觉任务发展四、优点五、FEQE网络结构图六、Instance Normmalization的有效性七、逆亚像素卷积八、均匀神经元贡献的优势九、损失函数十、实验部分十一、PIRM 2018 挑战赛十一、局限性一...2019-04-15 18:58:571754
2
-
原创 EDSR 论文笔记
目录一、介绍二、与SRResnNet相比三、BN层的意义四、残差缩放(residual scaling)的意义五、用预训练的×2网络初始化模型参数的意义六、MDSR七、损失函数使用L1而不是L2的原因八、实验结果一、介绍作者提出的模型主要是提高了图像超分辨的效果,并赢得了NTIRE2017超分辨率重建挑战赛。做出的修改主要是在ResNet上。作者移除...2019-04-04 14:37:333356
1
-
翻译 Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition 翻译
光流引导特征:视频动作识别的快速鲁棒运动表示 项目地址:https://github.com/kevin-ssy/Optical-Flow-Guided-Feature摘要运动表示在视频中的人类动作识别中起着至关重要的作用。在本研究中,我们介绍了一种用于视频动作识别的新颖紧凑运动表示,称为光流引导特征(OFF...2018-12-24 12:35:133646
1
-
原创 vs2017 ESRGAN(Enhanced SRGAN)的PyTorch实现
博主搭建项目参考借鉴的代码框架是:https://github.com/xinntao/BasicSR博主搭建项目参考的论文地址为:https://arxiv.org/pdf/1809.00219.pdf博主翻译论文网址:ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks 翻译目录一、环境和依赖项...2019-01-12 17:18:026812
24
-
翻译 ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks 翻译
ESRGAN:增强型超分辨率生成对抗网络 项目地址:https://github.com/xinntao/BasicSR摘要超分辨率生成对抗网络(SR GAN)[1]是一项开创性的工作,能够在单图像超分辨率期间生成逼真的纹理。然而,幻觉细节通常伴随着令人不快的伪影。为了进一步提高视觉质量,我们深入研究了SRGA...2019-01-13 17:06:418331
7
-
翻译 Efficient Video Object Segmentation via Network Modulation 翻译
通过网络调制实现高效的视频对象分割 项目地址:https://github.com/linjieyangsc/video_seg摘要当仅给出带注释的第一帧时,视频对象分割目标在整个视频序列中对特定对象进行分段。最近基于深度学习的方法发现使用数百次梯度下降迭代来微调注释帧上的通用分割模型是有效的。...2019-03-06 12:54:101693
1
-
原创 如何看论文
1.首先,要去了解这篇论文所要解决的问题,相关领域2.其次,这篇的网络架构是什么样的,设计的目的是什么,和之前的一些论文的架构和方法有什么优势,改进的地方在哪里3.这篇论文的不足和缺点,有可能自己提出,也有可能别的论文提出,需要仔细留意4.这篇论文的效果和其他方法的比较(传统方法/机器学习/深度学习方法),特殊场景/图片的比较...2019-03-14 11:19:321765
1
-
翻译 ESPCN 论文翻译
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network 项目地址:github(tensorflow):https://github.c...2019-03-18 14:40:063463
2
-
翻译 VESPCN 论文翻译
Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation 摘要卷积神经网络实现了准确的图像超分辨率。然而,最近受益于视频超分辨率中的时间相关性的尝试仅限于朴素或低效的架构。在本文中,我们介绍了时空亚像素卷积网络,有效地利用时间冗余,提高重...2019-03-22 18:47:292046
4
-
原创 VESPCN 论文笔记
博主相关译文:VESPCN 论文翻译目录一、解决问题二、原理三、空间转换网络(STN)四、VESPCN中的STN五、运动补偿(MC)六、损失函数七、图像融合八、结果展示一、解决问题1.用于高清视频SR的现有超分方法,在实时性上没有有效利用时间相关性。2.ESPCN利用亚像素卷积进行操作,但没有对视频处理帧的情况。3.VSRnet也是一个不错的网络...2019-04-04 10:51:412428
2
-
翻译 Diversity Regularized Spatiotemporal Attention for Video-based Person Re-identification 翻译
基于视频的人体再识别的时间规整化时空注意 项目地址:https://github.com/ShuangLI59/Diversity-Regularized-Spatiotemporal-Attention摘要基于视频的人体重新识别匹配非重叠摄像机的人的视频剪辑。大多数现有方法通过将...2018-12-18 11:43:422693
0