老兵安帕赫
工作了就没写过博客,只能抽时间写点了...
展开
-
PyTorch 入门实战(六)——2013kaggle比赛 猫狗大战的实现
1.熟练使用datasets.函数导入数据集2.网络灵活的搭建包括提取特征部分False,分类器部分最后True3.损失函数和优化方式的使用。原创 2019-04-01 21:15:14 · 12299 阅读 · 18 评论 -
PyTorch 入门实战(五)——vs2017\vs2019 VGG16处理cifar-10数据集的PyTorch实现
1.熟练使用VGG16做简单的深度学习代码训练;2.对于Python和PyTorch的掌握需要更加熟练。vs2017安装和使用教程(详细)vs2019安装和使用教程(详细)原创 2019-01-23 14:30:37 · 7036 阅读 · 22 评论 -
PyTorch 入门实战(四)——利用Torch.nn构建卷积神经网络
1.nn.Module是一个基类,需要派生一个子类构造自己的网络,需要改写的方法有__init__forward等,函数按照定义顺序构建网络。2.nn中各种模块的使用需要注意输入输出的衔接以及顺序。3.forward函数中的层层之间的输入输出的大小也要注意匹配。原创 2019-01-22 14:32:15 · 11165 阅读 · 9 评论 -
PyTorch 入门实战(三)——Dataset和DataLoader
1.Dataset是一个抽象类,需要派生一个子类构造数据集,需要改写的方法有__init__等。2.DataLoader是一个迭代器,方便我们访问Dataset里的对象,值得注意的的参数设置:如果放在cpu上跑,可以不管,但是放在GPU上则需要设置为0;或者在DataLoader操作之后将Tensor放在GPU上。3.数据和标签是tuple元组的形式,使用Dataloader然后使用enumerate函数访问它们。原创 2019-01-16 15:31:45 · 36156 阅读 · 21 评论 -
PyTorch 入门实战(二)——Variable
1.Variable和Tensor本质上没有区别,不过Variable会被放入一个计算图中,然后进行前向传播,反向传播,自动求导。2.Variable有三个属性,可以通过构造函数结构求取梯度得到grad值和grad_fn值3.Variable,Tensor和Numpy互相转化很方便,类型也比较兼容。原创 2019-01-15 14:30:11 · 15404 阅读 · 9 评论 -
PyTorch 入门实战(一)——Tensor
1.Tensor和Numpy都是矩阵,区别是前者可以在GPU上运行,后者只能在CPU上2.Tensor和Numpy互相转化很方便,类型也比较兼容。原创 2019-01-14 17:50:12 · 12606 阅读 · 5 评论