用GAN训练自己的数据生成新的图片

出于工作需要,学习了GAN,原理这块就不多讲了,主要讲怎么训练自己的数据生成新的图片,因为博客上大多是生成MNIST数据集,生成自己的图片时,有些小坑。下面记录一下本人基于参考链接,将MNIST数据集的代码改成生成自己数据时遇到的坑。

一、读取数据问题


# MNIST dataset
mnist = datasets.MNIST(
    root='./data/', train=True, transform=img_transform, download=True)
# Data loader
dataloader = torch.utils.data.DataLoader(
    dataset=mnist, batch_size=batch_size, shuffle=True)

可以看到,datasets.MNIST这个肯定不能用于我们自己的数据。我借鉴了原来做二分类的datasets.ImageFolder。发现老是报错:

RuntimeError: Found 0 files in subfolders of: E:\Projects\gan\battery\ng
Supported extensions are: .jpg,.jpeg,.png,.ppm,.bmp,.pgm,.tif,.tiff,.webp

后面单步调试,原来这个函数是需要文件夹下面有分类标签的,根据子文件夹名生成分类标签。故放弃,只能自己写了。下面是参考网上的,写了个读取数据的函数:

import numpy as np
import torch
import os
import random
from PIL import Image
from torch.utils.data import Dataset

class myDataset(Dataset):
    def __init__(self, data_dir, transform):

        self.data_dir = data_dir
        self.transform = transform
        self.img_names = [name for name in list(filter(lambda x: x.endswith(".jpg"), os.listdir(self.data_dir)))]

    def __getitem__(self, index):
        path_img = os.path.join(self.data_dir, self.img_names[index])
        img = Image.open(path_img).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)

        return img

    def __len__(self):
        if len(self.img_names) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(self.data_dir))
        return len(self.img_names)

二、维度不匹配问题

解决了读取数据之后,发现可以训练了,因为参考链接的MINIST数据都是单通道的,我们大部分图像都是3通道的,所以我将通道改为3后,发现判别器那块老是报错,标签和数据不匹配。

RuntimeError: mat1 dim 1 must match mat2 dim 0

后面一查,发现问题出在这句上面:

for i, (imgs, _) in enumerate(dataloader)

这样得到的imgs已经没有batch-size的信息了,需要改为这样:

for i, imgs in enumerate(dataloader):

下面是整个代码块,贴上去记录下来,以便过段时间万一忘了,还有个看的地方。

import argparse
import os
import numpy as np
import math

# import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets, models, transforms
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
from tools.my_dataset import myDataset
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=50, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=2, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False
print('cuda is',cuda)


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# # Configure data loader
# os.makedirs("./data/mnist", exist_ok=True)
# dataloader = torch.utils.data.DataLoader(
#     datasets.MNIST(
#         "./data/mnist",
#         train=True,
#         download=True,
#         transform=transforms.Compose(
#             [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
#         ),
#     ),
#     batch_size=opt.batch_size,
#     shuffle=True,
# )
dataset = r'E:\Projects\gan\battery'
ng_directory = os.path.join(dataset, 'ng')
ok_directory = os.path.join(dataset, 'ok')

image_transforms = {
    'ng': transforms.Compose([
        transforms.Resize([opt.img_size,opt.img_size]),
        transforms.ToTensor(),
        ]),

    'ok': transforms.Compose([
        transforms.Resize([opt.img_size,opt.img_size]),
        transforms.ToTensor(),
       ])}

data = {
    'ng': myDataset(data_dir=ng_directory, transform=image_transforms['ng']),
    'ok': myDataset(data_dir=ok_directory, transform=image_transforms['ok'])
}

dataloader = DataLoader(data['ng'], batch_size=opt.batch_size, shuffle=True)
ng_data_size = len(data['ng'])
ok_data_size = len(data['ok'])
print('train_size: {:4d}  valid_size:{:4d}'.format(ng_data_size, ok_data_size))
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))


Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    # for i, (imgs, _) in enumerate(dataloader):
    for i, imgs in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 3, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        aa = discriminator(gen_imgs)
        g_loss = adversarial_loss(aa, valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        bb = discriminator(real_imgs)
        real_loss = adversarial_loss(bb, valid)
        # 此处需要注意,detach()是为了截断梯度流,不计算生成网络的损失,
        # 因为d_loss包含了fake_loss,回传的时候如果不做处理,默认会计算generator的梯度,
        # 而这里只需要计算判别网络的梯度,更新其权重值,生成网络保持不变即可。
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

在这里插入图片描述

上面是原始图片,下面是生成的图片,从开始的噪声,到慢慢有点样子,还没训练完,由于我的显卡比较小,GTX1660Ti,6G显存,所以将原始图片从800x800压缩到了128x128,可能影响了效果,没关系,后面还可以优化,包括将全连接网络改为卷积的,图片设置大点,等等。
在这里插入图片描述

在这里插入图片描述

生成的图片

参考链接
GANs入门系列之(二)用GAN生成MNIST数据集之pytorch实现

  • 23
    点赞
  • 160
    收藏
    觉得还不错? 一键收藏
  • 51
    评论
### 回答1: GAN生成式对抗网络)是一种机器学习技术,利用神经网络来生成类似于训练数据数据。因此,GAN可以用来生成与已有数据类似的数据。 首先,需要准备一些已有的数据,作为GAN训练集。这些数据可以是任何类型的数据,例如图片、音频或文本。 然后,设置GAN的网络架构。GAN由两个主要的网络组成:生成器和判别器。生成器的任务是生成类似于训练数据数据,而判别器的任务是判断生成生成数据是否与训练数据相似。 在训练过程中,生成生成数据,并通过判别器来判断其与训练数据的相似度。如果生成生成数据训练数据相似度较低,则需要对生成器进行调整,使其生成更加类似于训练数据数据。 最终,当生成器的输出与训练数据非常相似时,GAN就可以用来生成类似于已有数据数据。 利用GAN生成类似于已有数据数据具有很大的潜力。例如,可以用GAN生成更多的样本,以便增加数据集的大小,从而提高机器学习算法的精度。此外,使用GAN还可以进行数据扩增,以增强模型的鲁棒性。总之,利用GAN生成类似于已有数据数据是一项非常有用的技术。 ### 回答2: GAN是一种生成对抗网络,可以用于生成类似于已有数据数据。利用GAN生成已有数据的类似数据的方法是,首先需要定义一个生成器网络和一个判别器网络。生成器网络接收一个随机噪声向量作为输入,尝试生成类似于原始数据数据。判别器网络则尝试将原始数据生成生成数据进行区分,判断哪些是原始数据,哪些是生成数据。 在训练过程中,生成器网络和判别器网络相互对抗。生成器网络尝试生成越来越类似于原始数据生成数据,而判别器网络尝试更好地区分原始数据生成数据。在训练的过程中,二者逐渐形成一种微妙的平衡,最终生成器网络可以生成与原始数据类似的数据GAN生成类似于已有数据数据的应用非常广泛,比如说生成艺术作品、三维模型等。例如,GAN可以生成具有相似脸部特征的艺术品或者模型。这些生成出来的数据可以用于增强数据集或者帮助人类艺术家、设计师更快地实现他们的创意。而GAN生成数据在某些领域也可能被用于模拟和预测。总之,GAN生成已有数据的类似数据在当今大数据、人工智能的背景下具有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值