【图像超分】论文精读:SRResNet/SRGAN

本文介绍了SRResNet和SRGAN,两种基于深度学习的图像超分辨率方法。SRResNet利用残差网络提升了4倍放大因子下的超分辨率效果,而SRGAN则进一步结合了生成对抗网络,提出感知损失函数,生成更接近真实纹理细节的图像。通过对抗性训练,SRGAN在保持高PSNR的同时,显著提高了图像的感知质量,尤其是在BSD100上的MOS测试中表现突出。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值