Keras_callback

本文介绍了Keras中的三个重要回调函数:ReduceLROnPlateau用于在评价指标不再提升时减少学习率;ModelCheckpoint用于在监测值达到最佳时保存模型;EarlyStopping则在监测值不再改善时提前终止训练。详细解释了各个参数的作用和使用场景。
摘要由CSDN通过智能技术生成

1.ReduceLROnPlateau
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)
当评价指标不在提升时,减少学习率
当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率


2.ModelCheckpoint
keras.callbacks.ModelCheckpoint(filepath,monitor='val_loss',verbose=0,save_best_only=False, save_weights_only=False, mode='auto', period=1)
filepath:字符串,保存模型的路径(可以将模型的准确率和损失等写到路径中,格式如下:)
ModelCheckpoint('model_check/'+'ep{epoch:d}-acc{acc:.3f}- val_acc{val_acc:.3f}.h5',monitor='val_loss')
还可以添加损失值等如 ‘loss{loss:.3f}-val_loss{val_loss:.3f}’

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值