在家用台式机上部署 DeepSeek-R1:低成本高性能的 CPU 推理方案---不到 4 万元

近年来,随着大模型技术的飞速发展,开源模型如 DeepSeek-R1 的出现为技术爱好者提供了更多探索人工智能的机会。然而,这类模型动辄数百亿参数,传统意义上需要昂贵的 GPU 集群才能运行,让许多个人开发者望而却步。最近,腾讯玄武实验室基于 CPU 的硬件方案优化,成功将 DeepSeek-R1-671B-Q8 模型部署在一台不到 4 万元人民币的设备上,峰值生成速度达到 7.17 tokens/s(约每秒输出 10 个汉字)。本文将详细介绍这一方案的技术细节和实现方法。


为什么 CPU 能跑动 671B 参数的大模型?

DeepSeek-R1 是一种高稀疏度的 MoE(Mixture of Experts)模型,其总参数量高达 671B,但实际推理时采用“按需激活”机制:每层包含 256 个专家(Expert),每次仅激活其中的 8 个专家。这种机制使得实际参与计算的参数量仅为约 37B,占整体参数量的 5.5%。因此,通过合理的量化和优化,纯 CPU 方案能够满足模型推理需求。


硬件选型与优化策略

在这里插入图片描述

为了实现低成本、低功耗的部署,我们对硬件选型进行了深入研究,并制定了以下优先级分配预算的原则:

“内存带宽” > “CPU 核心数” > “SSD 读写速度” > “CPU 主频”

以下是推荐的硬件配置清单(基于 AMD EPYC 5th Gen 9005 系列处理器):

  • 主板:MZ33-AR1(5950 元)
  • CPU:EPYC 9115(5400 元)或 EPYC 9135(7900 元)
  • 内存:DDR5 5600MHz 64GB x 12(22800 元)
  • SSD:1TB SSD(338 元)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值