写程序的时候,要将自己的逻辑思维和程序语言特点相结合,对于这些知识的认识必须要清晰,避免一些隐秘的错误。
深浅拷贝(Shallow copy / Deep copy)
深拷贝是内容拷贝,对象里面的所有内容都新申请了内存;
>>> lt = [1, [2, 3], 4]
>>> import copy
>>> lt2 = copy.deepcopy(lt)
>>> from pickle import dumps, loads
>>> lt3 = loads(dumps(lt))
>>> lt
[1, [2, 3], 4]
>>> lt2
[1, [2, 3], 4]
>>> lt3
[1, [2, 3], 4]
>>> lt[1].append(100)
>>> lt
[1, [2, 3, 100], 4]
>>> lt2
[1, [2, 3], 4]
>>> lt3
[1, [2, 3], 4]
浅拷贝只拷贝对象本身,对象内的可变元素只会增加一个引用。
>>> lt = [1, [2, 3], 4]
# 字典、列表和集合对象带有copy方法
>>> lt2 = lt.copy()
#copy模块
>>> import copy
>>> lt3 = copy.copy(lt)
>>> lt[1].append(100)
>>> lt
[1, [2, 3, 100], 4]
>>> lt2
[1, [2, 3, 100], 4]
>>> lt3
[1, [2, 3, 100], 4]
lt lt2 lt3,不论谁修改了其中可变元素对象,都会影响到其他的两个
首先需要了解的基础知识:Python中的内存管理
Python中的所有数据都是通过类实现的,对象的回收管理是通过引用计数来实现的,Python运行程序的时候,同时开启了两条线程,一个是主线程,负责执行程序,另外一个是垃圾回收线程,在底层轮循回收内存(最近最少使用原则),回收内存的依据就是对象的引用计数!
Python的内存机制中,有一个类似常量池的内存区域,用来存放不可变的数据,在程序中只要使用这些数据,数据的引用计数就会加1,所以我们在分析问题的时候,一般不去考虑不可变变量的引用计数,一般引用计数都是针对可变变量的。
当创建一个对象赋值给一个变量时,对象引用计数为1,当多一个变量指向该对象时,计数值加1,当少一个变量指向对象时,计数值减1,系统的垃圾回收机制就是根据对象的引用计数来释放对象内存的。
引用计数增加 对象创建: x = 7 新增标签: y = x 被作为参数传递给函数: foo(x) 作为容器对象的一个元素: lt = [1, x, '10'] 引用计数减少 一个本地引用离开了它的作用域,比如foo(x)函数结束,x指向的对象的引用计数减1 对象的标签被销毁: del x, 或者 del y 对象的标签被赋值了其他对象: x = 777 对象从一个容器对象中移除: lt.remove(x) 容器对象本身被销毁:del lt ,或者容器对象本身离开了作用域
>>> import sys
>>> a = 100
>>> sys.getrefcount(a)
4
>>> lt = [100, 10]
>>> sys.getrefcount(a)
5
>>> lt.append(a)
>>> lt
[100, 10, 100]
>>> sys.getrefcount(a)
6
>>> lt.remove(a)
>>> lt
[10, 100]
>>> sys.getrefcount(a)
5