Python内置函数-min函数和max函数-详解

博文主要内容如下:

max和min函数的使用介绍:

  1. 对可迭代对象元素进行比较,找到最大/最小值      max(iterable, *[, default=obj, key=func])
  2. 对传入的多个参数进行比较,找到最大/最小值      max(arg1, arg2, *args, *[, key=func])
  3. 介绍对复杂结构的数据下,如何使用函数定义中的key  。

         需求: 找到列表中出现次数最多的元素。
         三种实现方式:
             (1)灵活使用max函数的key参数 ;
             (2)使用字典统计元素计数,手工实现封装成函数  ;
             (3)拓展讲解了 collections.Counter类 ,使用Counter对象的most_common方法。

拓展内容:heapq模块的nlargest函数部分源码、 collections.Counter类介绍以及  most_common方法源码。


如何去探索max和min函数的功能呢?我们首先要做的就是阅读函数的官方API了!   
使用IDE查看函数,或者是在交互式环境下输入命令: help(max),会给出官方的函数注释:

def max(*args, key=None): # known special case of max
    """
    max(iterable, *[, default=obj, key=func]) -> value
    max(arg1, arg2, *args, *[, key=func]) -> value
    
    With a single iterable argument, return its biggest item. The
    default keyword-only argument specifies an object to return if
    the provided iterable is empty.
    With two or more arguments, return the largest argument.
    """
    pass

def min(*args, key=None): # known special case of min
    """
    min(iterable, *[, default=obj, key=func]) -> value
    min(arg1, arg2, *args, *[, key=func]) -> value
    
    With a single iterable argument, return its smallest item. The
    default keyword-only argument specifies an object to return if
    the provided iterable is empty.
    With two or more arguments, return the smallest argument.
    """
    pass

显示这样的内容,一般来说就代表了这两个函数的底层实现是C语言程序。有关具体的实现方法还需要进一步的探索源码。这篇博文我们先掌握API的内容:
         从函数说明上来看。max和min函数的使用方法是一样的,区别仅在于max函数是找最大值,min函数是找最小值。下面仅以max函数作为示例对max和min函数的使用进行说明:

注意,使用min和max,相互比较的元素之间必须是可比较的,否则会提示错误;有关元素之间的比较,我在之前一篇文章中展开了讨论,这篇博文的最后一部分是有关元素之间比较的讨论。博文地址:数据类型-容器类数据类型


一、函数的两种使用方式:
1,max(iterable, *[, default=obj, key=func]) -> value
      iterable:  要比较的元素都在可迭代对象中,第一个位置参数传入这份可迭代对象,函数将返回可迭代对象中最大的元素。  如果传入的是字典,那么将比较的是字典的键,也就是相当于传入了dt.keys()。

# 生成一个打乱顺序的由0-9数字组成的列表,用来测试max和min函数
>>> from random import shuffle
>>> data = list(range(10))
>>> shuffle(data)

>>> max(data)
9
>>> min(data)
0

    关键字参数default:   当可迭代对象中没有元素,如果指定了default关键字参数,那么就返回default参数的值。这种情况如果没有指定default参数,程序会报错:ValueError: max() arg is an empty sequence;

>>> max(range(10))
9
>>> max(range(0))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: max() arg is an empty sequence

下面的一段代码是我在阅读heapq模块的nlargest函数的源码时遇到的有关 default关键字参数的使用:
 

def nlargest(n, iterable, key=None):
    """找到数据集中最大的n个元素
    函数作用等值于:  sorted(iterable, key=key, reverse=True)[:n]
    """
    # Short-cut for n==1 is to use max()
    if n == 1:
        it = iter(iterable)
        sentinel = object()
        if key is None:
            result = max(it, default=sentinel)
        else:
            result = max(it, default=sentinel, key=key)
        return [] if result is sentinel else [result]
    pass
# 注意:sentinel是哨兵位置,用来监测传入的数据集是不是空的。
# 这里就是利用了max函数的default参数的作用来设置的哨兵位置,在可迭代对象为空的情况下能够返回空列表[]

2,max(arg1, arg2, *args, *[, key=func]) -> value
    传入多个参数,多个参数之间进行比较,找到最大的那个参数。

>>> max(9, 1, 2, 3)
9

二、函数的缺省参数key的使用:
key应当传入一个可调用对象,一般传入的是函数。指定key之后,max函数就会根据key处理后的元素进行比较。

需求1: 比如下面的情况,每种水果的价格信息都是以字典的形式存放的列表中,要找到最贵的水果和最便宜的水果

fruit_shop = [
    {'name': 'apple',  'price': 5.68},
    {'name': 'orange', 'price': 4.22},
    {'name': 'banana', 'price': 2.65},
    {'name': 'berries', 'price': 10.75}]

cheap = min(fruit_shop, key=lambda s: s['price'])
expensive = max(fruit_shop, key=lambda s: s['price'])
print('最便宜的水果是:', cheap)
print('最贵的水果是:', expensive)

####
# 最便宜的水果是: {'name': 'banana', 'price': 2.65}
# 最贵的水果是: {'name': 'berries', 'price': 10.75}

需求2:找到列表中出现次数最多的元素。

>>> lt = [2, 2, 3, 1, 2, 2, 1, 8, 5]
>>> max(set(lt), key=lt.count)
2

注:将count方法作为参数传递给max函数,则在此max函数是对元素出现频次进行比较的。

1.set(lt) 能够得到lt列表中所有唯一值,简单地说就是给列表元素去重,得到的是一个集合(即set类型)

>>> set(lt)

{1, 2, 3, 5, 8}

2.列表的count方法是找到统计列表元素出现的次数

>>> lt.count(2)
4
>>> lt.count(1)
2

 

不使用max函数我们要如何实现呢?


第一种方式: 自定义函数,手动的使用字典去统计元素计数

# 使用字典dt,统计元素(key)以及元素出现的次数(value)
# 出现次数最大的元素用max_count_key存放,
# 遍历列表元素,如果字典中已经统计过该元素的出现次数,那么不再重复进行统计;
                否则使用列表的count方法统计元素出现次数,并与max_count_key比较

def max_count(lt):
    dt = {}
    max_count_key = None
    for i in lt:
        # 字典中已经存在的元素不再进行统计
        if i not in dt:
            count = lt.count(i)
            dt[i] = count
            if count > dt.get(max_count_key, 0):
                max_count_key= i
    return max_count_key


第二种方式(推荐):使用collections.Counter类,它的most_common() 方法就是查找到序列中出现次数最多的

collections.Counter类,对可迭代对象中的元素进行计数,并以键值对的形式保存在Counter对象中
Counter对象属于映射,能够通过dict()将Counter对象转换为字典。

>>> from collections import Counter
>>> c = Counter('MyNameisMarsenHelloWorld')
>>> c
Counter({'e': 3, 'l': 3, 'M': 2, 'a': 2, 's': 2, 'r': 2, 'o': 2, 'y': 1, 'N': 1, 'm': 1, 'i': 1, 'n': 1, 'H': 1, 'W': 1, 'd': 1})
>>> dict(c)
{'M': 2, 'y': 1, 'N': 1, 'a': 2, 'm': 1, 'e': 3, 'i': 1, 's': 2, 'r': 2, 'n': 1, 'H': 1, 'l': 3, 'o': 2, 'W': 1, 'd': 1}

Counter类的most_common(n=None) 方法:列出n个最常见的元素及其计数,从最常见到最少见。如果n为None,则列出所有元素计数。也是从最常见到最少见。
函数返回值是由结果元素的组成的列表。

>>> c.most_common()
[('e', 3), ('l', 3), ('M', 2), ('a', 2), ('s', 2), ('r', 2), ('o', 2), ('y', 1), ('N', 1), ('m', 1), ('i', 1), ('n', 1), ('H', 1), ('W', 1), ('d', 1)]
>>> c.most_common(3)
[('e', 3), ('l', 3), ('M', 2)]

most_common方法源码阅读:
# 当n==None时,
方法的实现是通过内置函数: sorted(iterable [, key=None [,reverse=False]]) 对元素计数的统计结果进行逆序排序。
# 当方法的调用指定n的值时,
方法的实现是通过heapq模块的nlargest(n, iterable [ , key=None ])函数实现的,上面提到过这个函数的作用是从可迭代对象中找到最大的n个元素。直接利用这个函数,只需要用元素的计数进行比较,这样得到   了最常见的n个元素了。

def most_common(self, n=None):
    if n is None:
        return sorted(self.items(), key=_itemgetter(1), reverse=True)
    return _heapq.nlargest(n, self.items(), key=_itemgetter(1))

了解到Counter类之后,它在对数据技术的场合下是非常方便使用的工具,我们可以优先选择使用Counter类来实现功能,这比我们手工的使用字典计数方便很多。

对于这个需求2:找最大出现次数或者最小出现次数的元素时直接使用max或者min函数解决即可

如果需求是想找最常见的n个元素,那么就优先选择Counter类去实现相关功能。

>>> lt = [2, 2, 3, 1, 2, 2, 1, 8, 5]
>>> Counter(lt).most_common(1)
[(2, 4)]
>>> Counter(lt).most_common(1)[0][0]
2

 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值