ollama + qwen2.5:7b + vscode + 3060显卡部署本地大模型实现ai辅助代码编写

一、部署环境

1.电脑品牌:联想拯救者y9000p 2022
2.操作系统:windows11
3.GPU:RTX 3060 6G显存
4.CPU:12th Gen Intel® Core™ i7-12700H
5.内存:32G

二、部署步骤

第一步:安装ollama

登陆官网,下载window版的exe安装包,下载后双击安装即可;
在这里插入图片描述
下载安装完成后,打开powershell,输入ollama -v 验证下是否安装成功,如下图,出现版本号说明安装成功。
在这里插入图片描述

第二步:下载大模型

因为我想在本地搭建用于代码编写辅助提示的大模型,所以选择了qwen2.5-coder:7b,先在ollama官网模型仓库查找需要下载的模型,然后在本地下载模型,操作如下:
点击访问ollama官网
在这里插入图片描述
进入模型仓库页面后,找到需要下载的模型,复制模型下载命令“ollama run qwen2.5-coder:7b”
在这里插入图片描述
复制好的命令粘贴到powershell里面运行,最后面需要指明模型的参数量,我选择的是7b的,类似于docker下载镜像的时候需要指明版本号一样。下载完成后,便可进行对话了:
在这里插入图片描述
ollama常用命令:
1.查询下载了哪些模型:ollama list
在这里插入图片描述
2.运行模型:ollama run 模型名称
例如:ollama run qwen2.5-coder:7b
在这里插入图片描述
3.退出当前对话 /exit
在这里插入图片描述

三、集成vscode

部署ollama成功后,ollama的本地服务地址默认是http://localhost:11434(localhost可以换成本地网卡ip地址,服务器一样),vscode集成大模型需要借助应用市场的插件“Continue”,搜索并下载安装。
在这里插入图片描述
在这里插入图片描述
连接成功后,编可以开始对话了。
在这里插入图片描述
代码编写的时候会自动进行补填和提示。
在这里插入图片描述
如果需要更换模型,下载好以后根据上面的步骤添加就可以了,多个模型可以根据实际需要切换使用。

四、集成Chatbox

Chatbox AI 是一款 AI 客户端应用和智能助手,支持众多先进的 AI 模型和 API,可在 Windows、MacOS、Android、iOS、Linux 和网页版上使用(源于官网解释)。点击前往官网下载
说明一下,我们本地部署了大模型后,因为跟Chatbox是基于服务接口进行的对接,所以下载客户端也可以,使用官网的Chatbox网页版也可以,配置方式都是一样的,长期用的话还是建议下载客户端。
在这里插入图片描述
到此,Chatbox就配置完成了
题外话:
我在本地下载了两个模型,一个是qwen2.5-coder:7b,一个是deepseek-r1:14b,前者可以很流畅的运行,后者速度稍慢,但是也是可以接受的,毕竟参数在那里。下面针对两个模型写的同样需求的一首诗送给大家。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
创作不易,转载请标注出处

### 部署Qwen2.5:7B模型使用Ollama指南 对于希望利用Ollama平台来部署Qwen2.5:7B模型的开发者而言,了解具体的配置流程至关重要。由于Qwen2.5系列下的多个版本遵循Apache 2.0开源协议[^1],这意味着使用者可以在遵守该协议的前提下自由地修改和分发软件。 为了成功部署Qwen2.5:7B模型至Ollama环境,建议按照如下方法操作: #### 准备工作 确保本地开发环境中已安装必要的依赖项以及Python解释器。考虑到性能优化的需求,推荐选用较新的稳定版Python作为运行时支持。 #### 获取模型文件 访问官方仓库下载对应于Qwen2.5:7B预训练权重的压缩包,并将其解压到指定目录下以便后续加载调用。 #### 安装Ollama SDK 通过pip工具快速完成Ollama Python库的安装过程: ```bash pip install ollama ``` #### 编写启动脚本 创建一个新的Python文件用于编写初始化逻辑,下面是一个简单的例子展示如何连接远程服务器并上传模型参数: ```python from ollama import Client, ModelConfig client = Client(api_key='your_api_key_here') config = ModelConfig( name="qwen_2_5_7b", path="/path/to/unzipped/model/directory" ) response = client.upload_model(config) print(response.status_code) ``` 此段代码实现了向目标实例推送所需资源的功能,其中`api_key`需替换为实际有效的API密钥;而`/path/to/unzipped/model/directory`则应指向之前提到过的解压后的模型数据所在位置。 #### 启动服务端口监听 最后一步是在云端激活新导入的大规模语言处理单元,使之能够响应来自客户端的应用请求。这通常涉及到设置HTTP RESTful API接口或者其他形式的消息传递机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值