本文作者来自于Ant Financial Services Group和Georgia Institute of Technology。
本文提出一种可扩展的方法,用于学习定义在置换不变图数据上的神经网络的自适应接受域。在GeniePath中,我们提出了一种自适应路径层,它由两个互补的功能组成,分别用于广度和深度的探索,前者学习不同大小邻域的重要性,而后者则从不同跳点的邻域中提取和过滤聚合的信号。在几个数据集上的实验表明,本文的方法是相当有竞争力的,并在大型图表上产生最先进的结果。另一个显著的结果是,我们的方法对传播层的深度不那么敏感。
Discussions
GNN领域的主要工作是设计有效的聚集器功能,可以传播信号周围的t阶邻域为每个节点。他们中很少有人试图学习指导传播的有意义的路径。为什么学习接受路径很重要?原因可能有两方面:(1)图可能有噪声,在学习基于邻域的聚合时把噪声节点也聚合进去了。(2)不同的节点扮演不同的角色,因此产生不同的接受路径。举个例子,看图:
这是一个欺诈检测案例:高风险账户(红色节点)、风险未知的账户(绿色