图神经网络论文阅读(十八) GeniePath: Graph Neural Networks with Adaptive Receptive Paths,AAAI2019

文章提出GeniePath,一种用于图数据的可扩展方法,学习自适应接受域以进行广度和深度探索。通过自适应路径层,该方法能有效地在置换不变图上学习节点的邻域重要性和信号过滤。实验显示,GeniePath在多个数据集上表现出竞争力,尤其在大型图上取得最先进的结果,且对传播层的深度不敏感。
摘要由CSDN通过智能技术生成

本文作者来自于Ant Financial Services Group和Georgia Institute of Technology。
本文提出一种可扩展的方法,用于学习定义在置换不变图数据上的神经网络的自适应接受域。在GeniePath中,我们提出了一种自适应路径层,它由两个互补的功能组成,分别用于广度和深度的探索,前者学习不同大小邻域的重要性,而后者则从不同跳点的邻域中提取和过滤聚合的信号。在几个数据集上的实验表明,本文的方法是相当有竞争力的,并在大型图表上产生最先进的结果。另一个显著的结果是,我们的方法对传播层的深度不那么敏感。

Discussions

GNN领域的主要工作是设计有效的聚集器功能,可以传播信号周围的t阶邻域为每个节点。他们中很少有人试图学习指导传播的有意义的路径。为什么学习接受路径很重要?原因可能有两方面:(1)图可能有噪声,在学习基于邻域的聚合时把噪声节点也聚合进去了。(2)不同的节点扮演不同的角色,因此产生不同的接受路径。举个例子,看图:
在这里插入图片描述
这是一个欺诈检测案例:高风险账户(红色节点)、风险未知的账户(绿色

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值