本文的作者来自康涅狄格大学以及JD AI Research。
本文提出了一个端到端的模型SACN。它由一个加权图卷积网络(WGCN)的编码器和一个Conv-TransE的译码器组成,WGCN利用了KG节点结构、节点属性和边缘关系类型。该解码器使用了特殊的卷积简化了ConvE(后文会提到),并保留了TransE的平移性质以及ConvE的性能。
在related work中提到了一些经典的工作,比如Tans家族、DisTMult、ComplEX、STransE等。这里就不重点介绍了。
Method
先看一下整体的模型:首先是在原始图上执行WGCN,这和上一篇看过的文章一样,都是以不同类型的边为区分,做不同的卷积。之后,获取到实体节点的embedding。然后把实体和关系组成一个二维的张量,在其上执行Conv-TransE,最终通过评分函数衡量模型的好坏。这种连接预测相关的任务都是encoder-decoder的操作。