GNN 2021(十四) HDMI: High-order Deep Multiplex Infomax,WWW

该博客介绍了HDMI(High-order Deep Multiplex Infomax)模型,它是对DGI(Deep Graph Infomax)的改进,旨在解决DGI忽视内在信号和多关系边的问题。HDMI结合了外部和内部互信息,通过高阶深度信息最大化(HDI)优化监督信号,并采用注意力机制融合多路网络的节点嵌入。实验结果证明,HDMI在节点分类、聚类和相似性搜索等任务中表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
本文算是对之前的模型Deep Graph Infomax(DGI)的一个改进,DGI主要作用于自监督的节点分类,使用最大化局部节点嵌入和全局摘要之间的互信息的方式在许多下游任务(如节点分类)上显示出了很好的结果。然而,DGI有两个主要的限制。首先,DGI只考虑外部监督信号(即节点嵌入与全局总结之间的互信息)而忽略了内在信号(即节点嵌入与节点属性之间的相互依赖)。其次,现实网络中的节点通常由多条关系不同的边连接,而DGI并没有充分挖掘节点之间的各种关系。因此本文提出了HDMI模型,主要的贡献为:

  • 本文提出了一种基于高阶互信息的监督信号,将外部互信息和内在互信息结合起来,用于学习在属性网络和属性复用网络上的网络嵌入。
  • 我们引入了一种新的高阶深度信息最大化(HDI)来优化提出的基于互信息的高阶监控信号。
  • 提出了一种基于注意力的融合模块,通过基于高阶互信息的监控信号来训练多路网络中不同层次的节点嵌入。
  • 在不同的真实数据集上用不同的评价指标来评估所提方法,以证明所提方法的有效性。

PRELIMINARIES

Attributed Multiplex Network

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值