本文全面解析大模型优化技术,包括模型压缩(蒸馏、剪枝、量化)与推理加速(TensorRT)、输出控制(解码策略),结合类比说明 + 实战流程,适合部署工程师与模型训练者参考。
📖 目录
- 1. 解码策略优化(top-k, top-p, temperature)
- 2. 推理加速:TensorRT
- 3. 模型蒸馏(Distillation)
- 4. 模型剪枝(Pruning)
- 5. 模型量化(Quantization)
- 6. 技术对比总结
1. 解码策略优化(top-k, top-p, temperature)
类比:不改房子的结构,换一种开门方式,比如顺序更优、温度更舒适。
定义:控制文本生成的风格、随机性与多样性,不改变模型结构,仅是推理阶段的参数调节。
常见策略
top-k
: 从概率前 k 个 token 中采样(控制确定性)top-p
(nucleus sampling): 累积概率达到 p 的 token 集合中采样(更动态)temperature
: 控制概率分布的“平滑度”,高温 = 更随机
应用示例
output = model.generate(
input_ids,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
✅ 无需重新训练 / 不改模型结构 / 无需修改权重文件
2. 推理加速:TensorRT
类比:砖块不变,但将施工方式(推理执行图)重新打磨和拼装,提升效率。
核心优化策略
- Layer fusion:合并算子减少内存 IO
- Precision calibration:float32 → FP16 / INT8 加速
- Kernel autotune:选择最佳 CUDA 实现路径
实践流程
- 将 PyTorch 模型导出为 ONNX:
torch.onnx.export(model, dummy_input, "model.onnx")
- 使用
trtexec
或 Python API 生成 engine:
trtexec --onnx=model.onnx --saveEngine=model.trt
✅ 无需改结构 / 无需重新训练 / 仅影响部署文件(ONNX / TensorRT engine)
3. 模型蒸馏(Distillation)
类比:让“小学生”模仿“大学生”,构建更小的模型结构,显著压缩模型体积。
原理:
训练一个小模型(student),模仿大模型(teacher)的输出(logits/attention),而不是单纯靠标签。
常见应用:
TinyBERT
,DistilGPT2
,MobileBERT
示例代码结构
# 计算 student 和 teacher 的输出 KL 散度
loss = nn.KLDivLoss()(logits_student, logits_teacher)
特点:
- ✅结构改变(student 通常更小)
- ✅需重新训练
- 🔁适合对延迟要求高 / 设备资源有限场景
4. 模型剪枝(Pruning)
类比:在不动房型结构的情况下,拆掉一些无用的墙体或电线,减轻负担但不改格局。
原理:
通过 L1/L2 权重裁剪、重要性评分等方法,去除模型中“影响小”的连接。
常用方式
- 全连接层通道剪枝
- Transformer attention head 剪枝
- 结构剪枝 vs 非结构剪枝
实践流程
from torch.nn.utils import prune
prune.l1_unstructured(layer, name='weight', amount=0.3)
✅ 无需改模型结构(仍是 GPT2-12 层)
✅ 建议剪后微调
✅ 适合边缘部署 / 显存优化 / latency 优化
5. 模型量化(Quantization)
类比:把砖头换成泡沫,重量变轻但结构不变。
分类:
- 动态量化:部署时转换为 INT8(无需重训)
- 静态量化:量化前后需收集校准数据
- QAT(量化感知训练):最准确但需重新训练
示例代码(动态量化):
quant_model = torch.quantization.quantize_dynamic(
model, {nn.Linear}, dtype=torch.qint8
)
✅ 静态/感知量化建议重新训练
✅ 部署格式常用 ONNX + INT8 engine
❌ 不改模型结构(仅精度变化)
6. 技术对比总结
技术 | 是否需训练 | 是否改结构 | 修改范围 | 优势 |
---|---|---|---|---|
解码策略优化 | 否 | 否 | 无 | 提升生成效果,多样性可控 |
TensorRT | 否 | 否 | ONNX / engine 文件 | 推理速度提升,部署简便 |
蒸馏 | 是 | 是 | 权重 + 配置 + 架构 | 大幅减小模型体积,精度相对保持 |
剪枝 | 是 | 否 | 仅权重(.bin) | 显存占用减少,推理更快 |
量化 | 否/是 | 否 | 推理模型结构/权重 | 推理速度加快,模型更小,适合部署 |
📌 YoanAILab 技术导航页
💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页
📚 包含内容:
- 🧠 GPT-2 项目源码(GitHub)
- ✍️ CSDN 技术专栏合集
- 💼 知乎转型日志
- 📖 公众号 YoanAILab 全文合集