如何利用Git上传项目至GitHub?

本文以Git Bash为基本工具,说一下如何将本地项目上传至GitHub,其他版本控制平台也使用类似的方法。好了,废话不多说,直接开始今天的正题。


第一步:设置Git Bash本地用户信息


打开Git Bash,依次输入以下两行命令,其中引号内的yourUsername替换为自己在GitHub上的用户名,而yourEmail也要替换为对应用户的邮件地址。

git config --global user.name "yourUsername"
git config --global user.email "yourEmail"

注意:

  • 可以使用命令git config --list查看当前的配置信息,以确保无误。
  • 后续的命令若无特殊说明,均是在Git Bash中执行。

第二步:设置SSH秘钥


创建SSK key使用命令(此处的yourEmail替换成自己的邮件地址):

ssh-keygen -t rsa -C "yourEmail"

此时使用命令 ls ~/.ssh 可以查看到以下结果:

 然后打开、登录GitHub,如图点击右上角 -> Settings,进入设置页面。

 进入后,点击左侧SSH and GPG keys选项卡,页面响应完成后点击右上方的按钮(New SSH key)。

 此处Title随意填写,将~/.ssh/id_rsa.pub中的内容(公钥,该文件在第一步中有提及)复制到Key下面的文本框中,提交保存(Add SSH key)。

 到这里就完成了SSH key的配置


第三步:创建本地仓库并上传至GItHub


进入项目所在目录(以空项目为例),接着执行 git init 初始化仓库,然后根据自己的需求将项目文件复制到该目录下,或者直接进入自己的项目根目录执行仓库初始化过程。(此处的CCalculator为项目名称,亦即项目根目录)

cd D:/CCalculator/
git init

将项目内所有文件及其部分属性变化提交到暂存区(需在项目的根目录下执行),其中 . (点号)代表目录下所有文件:

git add .

将暂存区的内容提交到本地的版本库,其中message可由自己制定,表征此次修改,便于版本查看或回退:

git commit -m "message"

进入自己的GItHub首页,点击右上角的 +(加号) -> New repository,输入name、description、gitignore等信息,点击Create按钮,完成Repository的创建。

然后会得到项目的跟地址,如https://github.com/用户名/项目名,此处以个人项目为例,地址为https://github.com/yangTangGit/CCalculator。

 关联远程仓库,注意此处的地址以 .git 结尾。

git remote add origin https://github.com/yangTangGit/CCalculator.git

推送到origin主机,其中 -u 表示将origin制定为默认主机, -f 表示强制覆盖远程仓库的版本,慎用。以master为Branch。

git push -fu origin master

到这里,操作完成,接着就可以在自己的GitHub里面看到上传的项目了。

 

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值