【机器学习】 概率有向图模型

在这里插入图片描述
在这里插入图片描述
【贝叶斯网络】
在这里插入图片描述
在这里插入图片描述
【贝叶斯定理】
贝叶斯定理可以体现先验概率和后验概率之间的转换。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
【有向分离】
有向分离对应于概率论中的条件独立性,其目的是从图的角度出发寻找节点之间的条件独立性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
比如对于下图:
在这里插入图片描述
xi=a, xj=b
则z={e,f}, l=a-e-f-b
l中有一个头对头节点e,和一个尾对尾节点f,满足条件2,所以l是关于z的一条阻断路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值