一、背景知识
1.1 GCN的作用
欧几里得结构:CNN处理的数据是矩阵形式,就是以像素点排列成的矩阵为基础。称为Euclidean Structure,欧几里得结构。
拓扑结构(图结构):GCN处理的数据是图结构,即Non Euclidean Structure非欧几里得结构,拓扑结构。如社交网络连接,信息网络等等。对于Non euclidean structure的数据,卷积神经网络就没有用了。
对于卷积神经网络CNN,图片中提取特征,可以采用卷积的方式提取特征。但是对于拓扑结构,只能用其他方法来提取特征。因此使用GCN来提取拓扑结构图中的特征。
1.2 傅立叶变换
傅立叶变换:将一个域的信号转换到另一个域,便于我们分析与运算。
傅立叶变换的性质:原域进行卷积,相当于频域进行相乘,即:
f ∗ g = F − 1 { F { f } ⋅ F { g } } f * g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\} f∗g=F−1{
F{
f}⋅F{
g}}
即一个域相乘,相当于另一个域卷积;一个域卷积,相当于另一个域相乘。
算图域卷积相当于傅立叶域相乘,那先对图和卷积核做傅立叶变换后相乘,再傅立叶反变换回来,就得到了图域卷积。
1.3 图的拉普拉斯矩阵
图的拉普拉斯矩阵定义为:L = D - A
L为拉普拉斯矩阵Laplacian matrix;
D为对角度矩阵Degree matrix,对角线上的元素是顶点的度,即该元素链接的元素的个数;
A为邻接矩阵 Adjacency matrix ,即表示任意两个顶点之间的邻接关系,邻接则为1,不邻接则为0。
1.4 傅立叶变换与拉普拉斯矩阵的关系
传统傅立叶变换的基,就是拉普拉斯矩阵的一组特征向量。
L = U Λ U T = U ( λ 1 ⋱ λ n ) U − 1 L=U \Lambda U^{T}=U\left(\begin{array}{ccc} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{array}\right) U^{-1} L=UΛUT=U⎝⎛λ1⋱λn⎠⎞