题目信息:
这道题是上一道题的亲兄弟,上道题用数学公式过了,这道题升了个级,加了个障碍物,想了想还是别绕弯了,老老实实动归吧。
思路在注释中。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
//障碍物的格子就不通嘛,直接设置0条路径
//你看题目多好,连dp的二维状态数组都给了,它白给我们白拿
//dp[0][0] = 1
//dp[1][0] = d[i-1][0]
//dp[0][1] = d[i][j-1]
//上面给了几个示例我们可以推出我们的状态转移公式:
//dp[i][j] = dp[i-1][j] + dp[i][j-1] if(obstacleGrid[i][j]!=1)
//dp[i][j] = 0 if(dp[i][j]==1) 有障碍物很明显此路不通
int n = obstacleGrid.size();
int m = obstacleGrid[0].size();
long dp[n+5][m+5];
memset(dp, 0, sizeof(dp));
//记录是否初始化
int initFlag = 0;
//老规矩从1开始,外围做一圈padding
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(obstacleGrid[i-1][j-1] == 0) dp[i][j] = dp[i-1][j] + dp[i][j-1];
//初始化起始点
//放在这里不会被上面那行代码覆盖掉
if (initFlag == 0){
dp[1][1] = 1;
initFlag = 1;
}
//放在这里可以判断只有一个障碍物的情况,不会被上面那行代码覆盖掉
if(obstacleGrid[i-1][j-1] == 1) dp[i][j] = 0;
}
}
return dp[n][m];
}
};
这道题dp数组卡了个long,卡了个[[1]],兄弟萌小心。