MATLAB基础(六)评价类算法

本文介绍了MATLAB中用于评价类算法的方法,包括综合评定法如总分法和加权综合评定法,现代评价方法如层次分析法(AHP)和模糊综合评定法。此外,还详细讨论了模糊集合的概念,以及BP神经网络的构建和训练过程,提供了多个示例展示如何使用MATLAB实现非线性函数逼近任务。
摘要由CSDN通过智能技术生成

常见的综合评定方法分为两类:

1)综合评定法:直接评分法(专家打分综合法)、总分法、加权综合评定法、AHP+模糊综合评判、模糊神经网络评价法、待定系数法及分类法.

现代综合评价方法:层次分析法(Analytic Hierarchy Process,AHP)、数据包络分析法(Data Envelopment Analysis,DEA)、人工神经网络评价法(Artificial Neural Network,ANN)、灰色综合评价法、模糊综合评定法

两种经典的综合评判决策:

总分法:S=ΣSi.加权综合评定法:E=ΣaiSi

(2)两两比较法:顺序法和优序法.

常见的评价类模型

层次分析法

模糊综合评价法

神经网络算法

 

模糊综合评价算法

1965年,美国著名自动控制专家查德(L.A. Zadeh)教授提出了模糊(fuzzy)的概念,并发表了第一篇用数学方法研究模糊现象的论文“模糊集合”(fuzzy set)。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。

在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合,即论域上的元素符合概念的程度不是绝对的0或1(不是或是),而是介于0和1之间的一个实数。

 

                                                                                             BP神经网络

1、BP网络构建

(1)生成BP网络

:由维的输入样本最小最大值构成的维矩阵。

:各层的神经元个数。

*通常情况输入层神经元个数与选取的指标相关,隐含层通常不超过输入层的2 倍

:各层的神经元传递函数。

*常用的传递函数

   purelin:线性传递函数

   tansig:正切S型传递函数

   logsig:对数S型传递函数

:训练用函数的名称。

(2)网络训练

(3)网络仿真

 

BP网络的训练函数

训练方法

训练函数

梯度下降法

traingd

有动量的梯度下降法

traingdm

自适应lr梯度下降法

traingda

自适应lr动量梯度下降法

traingdx

弹性梯度下降法

trainrp

Fletcher-Reeves共轭梯度法

traincgf

Ploak-Ribiere共轭梯度法

traincgp

Powell-Beale共轭梯度法

traincgb

量化共轭梯度法

trainscg

拟牛顿算法

trainbfg

一步正割算法

trainoss

Levenberg-Marquardt

trainlm

 

BP网络训练参数

训练参数

参数介绍

训练函数

net.trainParam.epochs

最大训练次数(缺省为10)

traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm

net.trainParam.goal

训练要求精度(缺省为0)

traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm

net.trainParam.lr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值