•常见的综合评定方法分为两类:
•(1)综合评定法:直接评分法(专家打分综合法)、总分法、加权综合评定法、AHP+模糊综合评判、模糊神经网络评价法、待定系数法及分类法.
•现代综合评价方法:层次分析法(Analytic Hierarchy Process,AHP)、数据包络分析法(Data Envelopment Analysis,DEA)、人工神经网络评价法(Artificial Neural Network,ANN)、灰色综合评价法、模糊综合评定法
•两种经典的综合评判决策:
•总分法:S=ΣSi.加权综合评定法:E=ΣaiSi
•(2)两两比较法:顺序法和优序法.
常见的评价类模型
•层次分析法
•模糊综合评价法
•神经网络算法
模糊综合评价算法
•1965年,美国著名自动控制专家查德(L.A. Zadeh)教授提出了模糊(fuzzy)的概念,并发表了第一篇用数学方法研究模糊现象的论文“模糊集合”(fuzzy set)。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。
•在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合,即论域上的元素符合概念的程度不是绝对的0或1(不是或是),而是介于0和1之间的一个实数。
BP神经网络
1、BP网络构建
(1)生成BP网络
:由维的输入样本最小最大值构成的维矩阵。
:各层的神经元个数。
*通常情况输入层神经元个数与选取的指标相关,隐含层通常不超过输入层的2 倍
:各层的神经元传递函数。
*常用的传递函数
purelin:线性传递函数
tansig:正切S型传递函数
logsig:对数S型传递函数
:训练用函数的名称。
(2)网络训练
(3)网络仿真
BP网络的训练函数
训练方法 |
训练函数 |
梯度下降法 |
traingd |
有动量的梯度下降法 |
traingdm |
自适应lr梯度下降法 |
traingda |
自适应lr动量梯度下降法 |
traingdx |
弹性梯度下降法 |
trainrp |
Fletcher-Reeves共轭梯度法 |
traincgf |
Ploak-Ribiere共轭梯度法 |
traincgp |
Powell-Beale共轭梯度法 |
traincgb |
量化共轭梯度法 |
trainscg |
拟牛顿算法 |
trainbfg |
一步正割算法 |
trainoss |
Levenberg-Marquardt |
trainlm |
BP网络训练参数
训练参数 |
参数介绍 |
训练函数 |
net.trainParam.epochs |
最大训练次数(缺省为10) |
traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.goal |
训练要求精度(缺省为0) |
traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.lr |