详解递归 | C / C++ 汉诺塔移动路线和移动次数问题

本文介绍了汉诺塔问题的背景及解决方法,包括如何通过递归算法计算移动次数及具体的移动步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

题目内容
  汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
这里写图片描述

问题1

输入盘子的数量n,求多少步能搬完。
样例输入

3

样例输出

7

//C语言求移动次数的递归函数 
include<stdio.h>
int h(int m)
{
	int s;
	if(m==1)      // 确定初始条件
		s=1;
	else
		s=2*h(m-1)+1;
	return s;
}
int main()
{   
	int n;
	scanf("%d",&n);
	printf("%ld",h(n));
}

问题2

提示“请输入盘子数:”,输入盘子的数量n,打印移动过程,并输出“总共移动了n次”。
样例输入

3

样例输出

移动3个盘子的过程:
A → C
A → B
C → B
A → C
B → A
B → C
A → C
总共移动了7次

//C++
#include<iostream>
using namespace std;
int s=0;
void move(char m,char n)
{
	cout<<m<<" → "<<n<<endl;
	s++;
}
void hanoi(int n,char a,char b,char c)
{ 
	if(n==1)
	{ 
		move(a,c);
	}
	else
	{
		hanoi(n-1,a,c,b);//借助c将n-1个盘子从a移动到b 
		move(a,c);
		hanoi(n-1,b,a,c);//借助a将n-1个盘子从b移动到c 
	}
}
int main()
{
	int n;
	cout<<"请输入盘子数:";
	cin>>n;
	cout<<"移动"<<n<<"个盘子的过程:"<<endl;
	hanoi(n,'A','B','C') ;
	cout<<"总共移动了"<<s<<"次"; 
	return 0;
 } 

解析递归

其实上边题目里那个古老的传说是法国数学家编写的。故事原来是这样的:

在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

先不考虑64个盘,我们先考虑6个怎么从A移动到B。
在这里插入图片描述
然后你会发现6个也不是很好思考,那我们就先只考虑3个盘:
从左到右ABC三个柱子,从上到下123三个盘子。
在这里插入图片描述

  1. 把盘子1从A移到B
  2. 把盘子2从A移到C
  3. 把盘子1从B移到C
  4. 把盘子3从A移到B
  5. 把盘子1从C移到A
  6. 把盘子2从C移到B
  7. 把盘子1从A移到B
    在这里插入图片描述
    前三步把顶上的两个盘子从A移到C,后三步把顶上的两个盘子从C移到B。
  • 三层汉诺塔就是:
    • 将2个盘子从A→C
    • 将最大盘子从A→B
    • 将2个盘子从C→B
      四层汉诺塔就是:
    • 将3个盘子从A→C
    • 将最大盘子从A→B
    • 将3个盘子从C→B
  • 五层汉诺塔就是:
    • 将4个盘子从A→C
    • 将最大盘子从A→B
    • 将4个盘子从C→B
  • 六层汉诺塔就是:
    • 将4个盘子从A→C
    • 将最大盘子从A→B
    • 将4个盘子从C→B

所以汉诺塔的移动次数就是:
H ( n ) = H ( n − 1 ) + 1 + H ( n − 1 ) H(n) = H(n-1) + 1 + H(n-1) H(n)=H(n1)+1+H(n1)
n层移动次数 = n-1层移动次数 + 最大盘子移动一次 + n-1层移动次数
H ( 0 ) = 0 H(0)=0 H(0)=0
H ( 1 ) = H ( 0 ) + 1 + H ( 0 ) = 1 H(1)=H(0)+1+H(0)=1 H(1)=H(0)+1+H(0)=1
H ( 2 ) = H ( 1 ) + 1 + H ( 1 ) = 3 H(2)=H(1)+1+H(1)=3 H(2)=H(1)+1+H(1)=3
H ( 3 ) = H ( 2 ) + 1 + H ( 2 ) = 7 H(3)=H(2)+1+H(2)=7 H(3)=H(2)+1+H(2)=7
H ( 4 ) = H ( 3 ) + 1 + H ( 3 ) = 15 H(4)=H(3)+1+H(3)=15 H(4)=H(3)+1+H(3)=15
H ( 5 ) = H ( 4 ) + 1 + H ( 4 ) = 31 H(5)=H(4)+1+H(4)=31 H(5)=H(4)+1+H(4)=31
H ( 6 ) = H ( 5 ) + 1 + H ( 5 ) = 63 H(6)=H(5)+1+H(5)=63 H(6)=H(5)+1+H(5)=63

n个圆盘的时候 2的n次方减1

H ( n ) = 2 n − 1 H(n) = 2^n - 1 H(n)=2n1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ann's Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值