深度学习之caffe入门学习

caffe入门学习

原文地址http://blog.csdn.net/hjimce/article/details/48933813

作者:hjimce

本文主要讲解caffe的整个使用流程,适用于初级入门caffe,通过学习本篇博文,理清项目训练、测试流程。初级教程,高手请绕道。

我们知道,在caffe编译完后,在caffe目录下会生成一个build目录,在build目录下有个tools,这个里面有个可执行文件caffe,如下图所示:


有了这个可执行文件我们就可以进行模型的训练,只需要学会调用这个可执行文件就可以了,这便是最简单的caffe学习,不需要对caffe底层的东西懂太多,只需要会调参数,就可以构建自己的网络,然后调用这个可执行文件就可以进行训练,当然如果你不仅仅是调参数,而且想要更改相关的算法,那就要深入学习caffe的底层函数调用了,这个以后再讲。本篇博文仅适合于刚入门学习caffe,高手请绕道。废话不多说,回归正题:

一、总流程

完成一个简单的自己的网络模型训练预测,主要包含几个步骤:

1、数据格式处理,也就是把我们的图片.jpg,.png等图片以及标注标签,打包在一起,搞成caffe可以直接方便调用的文件。后面我将具体讲解如何打包自己的数据,让caffe进行调用。

2、编写网络结构文件,这个文件的后缀格式是.prototxt。就是编写你的网络有多少层,每一层有多少个特征图,输入、输出……。看个例子,看一下caffe-》example-》mnist-》lenet_train_test.prototxt。这个便是手写字体网络结构文件了,我们需要根据自己的需要学会修改这个文件:


 
 
  1. <span style= "font-size:18px;">name: "LeNet"
  2. layer {
  3. name: "mnist"
  4. type: "Data" //data层
  5. top: "data"
  6. top: "label"
  7. include {
  8. phase: TRAIN //训练阶段
  9. }
  10. transform_param {
  11. scale: 0.00390625 //对所有的图片归一化到0~1之间,也就是对输入数据全部乘以scale,0.0039= 1/255
  12. }
  13. data_param {
  14. source: "examples/mnist/mnist_train_lmdb" //训练数据图片路径
  15. batch_size: 64 //每次训练采用的图片64张,min-batch
  16. backend: LMDB
  17. }
  18. }
  19. layer {
  20. name: "mnist"
  21. type: "Data"
  22. top: "data"
  23. top: "label"
  24. include {
  25. phase: TEST //测试
  26. }
  27. transform_param {
  28. scale: 0.00390625
  29. }
  30. data_param {
  31. source: "examples/mnist/mnist_test_lmdb" //测试数据图片路径
  32. batch_size: 100
  33. backend: LMDB
  34. }
  35. }
  36. layer {
  37. name: "conv1" //卷积神经网络的第一层,卷积层
  38. type: "Convolution" //这层操作为卷积
  39. bottom: "data" //这一层的前一层是data层
  40. top: "conv1" //
  41. param {
  42. lr_mult: 1
  43. }
  44. param {
  45. lr_mult: 2
  46. }
  47. convolution_param {
  48. num_output: 20 //定义输出特征图个数
  49. kernel_size: 5 //定义卷积核大小
  50. stride: 1
  51. weight_filler {
  52. type: "xavier"
  53. }
  54. bias_filler {
  55. type: "constant"
  56. }
  57. }
  58. }
  59. layer {
  60. name: "pool1"
  61. type: "Pooling" //池化层,这一层的操作为池化
  62. bottom: "conv1" //这一层的前面一层名字为:conv1
  63. top: "pool1"
  64. pooling_param {
  65. pool: MAX //最大池化
  66. kernel_size: 2
  67. stride: 2
  68. }
  69. }
  70. layer {
  71. name: "conv2"
  72. type: "Convolution"
  73. bottom: "pool1"
  74. top: "conv2"
  75. param {
  76. lr_mult: 1
  77. }
  78. param {
  79. lr_mult: 2
  80. }
  81. convolution_param {
  82. num_output: 50
  83. kernel_size: 5
  84. stride: 1
  85. weight_filler {
  86. type: "xavier"
  87. }
  88. bias_filler {
  89. type: "constant"
  90. }
  91. }
  92. }
  93. layer {
  94. name: "pool2"
  95. type: "Pooling"
  96. bottom: "conv2"
  97. top: "pool2"
  98. pooling_param {
  99. pool: MAX
  100. kernel_size: 2
  101. stride: 2
  102. }
  103. }
  104. layer {
  105. name: "ip1"
  106. type: "InnerProduct"
  107. bottom: "pool2"
  108. top: "ip1"
  109. param {
  110. lr_mult: 1
  111. }
  112. param {
  113. lr_mult: 2
  114. }
  115. inner_product_param {
  116. num_output: 500
  117. weight_filler {
  118. type: "xavier"
  119. }
  120. bias_filler {
  121. type: "constant"
  122. }
  123. }
  124. }
  125. layer {
  126. name: "relu1"
  127. type: "ReLU"
  128. bottom: "ip1"
  129. top: "ip1"
  130. }
  131. layer {
  132. name: "ip2"
  133. type: "InnerProduct"
  134. bottom: "ip1"
  135. top: "ip2"
  136. param {
  137. lr_mult: 1
  138. }
  139. param {
  140. lr_mult: 2
  141. }
  142. inner_product_param {
  143. num_output: 10
  144. weight_filler {
  145. type: "xavier"
  146. }
  147. bias_filler {
  148. type: "constant"
  149. }
  150. }
  151. }
  152. layer {
  153. name: "accuracy"
  154. type: "Accuracy"
  155. bottom: "ip2"
  156. bottom: "label"
  157. top: "accuracy"
  158. include {
  159. phase: TEST
  160. }
  161. }
  162. layer {
  163. name: "loss"
  164. type: "SoftmaxWithLoss"
  165. bottom: "ip2"
  166. bottom: "label"
  167. top: "loss"
  168. }</span>

上面的网络结构,定义的data层,就是定义我们输入的训练数据的路径、图片变换等。

3、网络求解文件,这个文件我们喜欢把它取名为:solver.prototxt,这个文件的后缀格式也是.prototxt。这个文件主要包含了一些求解网络,梯度下降参数、迭代次数等参数……,看下手写字体的solver.prototxt文件:


 
 
  1. <span style= "font-size:18px;">net: "examples/mnist/lenet_train_test.prototxt" //定义网络结构文件,也就是我们上一步编写的文件
  2. test_iter: 100
  3. test_interval: 500 //每隔500次用测试数据,做一次验证
  4. base_lr: 0.01 //学习率
  5. momentum: 0.9 //动量参数
  6. weight_decay: 0.0005 //权重衰减系数
  7. lr_policy: "inv" //梯度下降的相关优化策略
  8. gamma: 0.0001
  9. power: 0.75
  10. display: 100
  11. max_iter: 10000 //最大迭代次数
  12. snapshot: 5000 //每迭代5000次,保存一次结果
  13. snapshot_prefix: "examples/mnist/lenet" //保存结果路径
  14. solver_mode: GPU //训练硬件设备选择GPU还是CPU</span>

这个文件的输入就是我们前面一步定义的网络结构。

4、编写网络求解文件后,我们可以说已经完成了CNN网络的编写。接着我们需要把这个文件,作为caffe的输入参数,调用caffe可执行文件,进行训练就可以了。具体的命令如下:

./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt
 
 

这样就完事了,程序就开始训练了。上面的第一个参数caffe,就是我们在编译caffe,生成的可执行文件:



然后solver就是我们在步骤3编写的solver文件了,只要在ubuntu终端输入上面的命令,就可以开始训练了。

回想一下文件调用过程:首先caffe可执行文件,调用了solver.prototxt文件,而这个文件又调用了网络结构文件lenet_train_test.prototxt,然后lenet_train_test.prototxt文件里面又会调用输入的训练图片数据等。因此我们如果要训练自己的模型,需要备好3个文件:数据文件lmdb(该文件包含寻数据)、网络结构lenet_train_test.prototxt、求解文件solver.prototxt,这几个文件名随便,但是文件后缀格式不要随便乱改。把这三个文件放在同一个目录下,然后在终端输入命令,调用caffe就可以开始训练了。

二、相关细节

1、lmdb数据格式生成

caffe输入训练图片数据我比较喜欢用lmdb格式,好像还有另外一种格式leveldb,这个具体没用过,这里主要讲解lmdb格式数据的制作。其实在caffe-》example-》imagenet文件夹下面的一些脚本文件可以帮助我们快速生产相关的caffe所需的数据。


create_imagenet.sh这个文件可以帮我们快速的生成lmdb的数据格式文件,因此我们只需要把这个脚本文件复制出来,稍作修改,就可以对我们的训练图片、标注文件进行打包为lmdb格式文件了。制作图片的脚本文件如下:


 
 
  1. <span style= "font-size:18px;"> #!/usr/bin/env sh
  2. # Create the imagenet lmdb inputs
  3. # N.B. set the path to the imagenet train + val data dirs
  4. EXAMPLE=. # 生成模型训练数据文化夹
  5. TOOLS=../../build/tools # caffe的工具库,不用变
  6. DATA=. # python脚步处理后数据路径
  7. TRAIN_DATA_ROOT=train/ #待处理的训练数据图片路径
  8. VAL_DATA_ROOT=val/ # 带处理的验证数据图片路径
  9. # Set RESIZE=true to resize the images to 256x256. Leave as false if images have
  10. # already been resized using another tool.
  11. RESIZE=true #图片缩放
  12. if $RESIZE; then
  13. RESIZE_HEIGHT= 256
  14. RESIZE_WIDTH= 256
  15. else
  16. RESIZE_HEIGHT= 0
  17. RESIZE_WIDTH= 0
  18. fi
  19. if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  20. echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  21. echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
  22. "where the ImageNet training data is stored."
  23. exit 1
  24. fi
  25. if [ ! -d "$VAL_DATA_ROOT" ]; then
  26. echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
  27. echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
  28. "where the ImageNet validation data is stored."
  29. exit 1
  30. fi
  31. echo "Creating train lmdb..."
  32. GLOG_logtostderr= 1 $TOOLS/convert_imageset \
  33. --resize_height=$RESIZE_HEIGHT \
  34. --resize_width=$RESIZE_WIDTH \
  35. --shuffle \
  36. $TRAIN_DATA_ROOT \
  37. $DATA/train.txt \ #标签训练数据文件
  38. $EXAMPLE/train_lmdb
  39. echo "Creating val lmdb..."
  40. GLOG_logtostderr= 1 $TOOLS/convert_imageset \
  41. --resize_height=$RESIZE_HEIGHT \
  42. --resize_width=$RESIZE_WIDTH \
  43. --shuffle \
  44. $VAL_DATA_ROOT \
  45. $DATA/val.txt \ #验证集标签数据
  46. $EXAMPLE/val_lmdb
  47. echo "Done."</span>
同时我们需要制作如下四个文件:

1、文件夹train,用于存放训练图片

2、文件夹val,用于存放验证图片

3、文件train.txt,里面包含这每张图片的名称,及其对应的标签。


 
 
  1. <span style= "font-size:18px;">first_batch/train_female/ 992.jpg 1
  2. first_batch/train_female/ 993.jpg 1
  3. first_batch/train_female/ 994.jpg 1
  4. first_batch/train_female/ 995.jpg 1
  5. first_batch/train_female/ 996.jpg 1
  6. first_batch/train_female/ 997.jpg 1
  7. first_batch/train_female/ 998.jpg 1
  8. first_batch/train_female/ 999.jpg 1
  9. first_batch/train_male/ 1000.jpg 0
  10. first_batch/train_male/ 1001.jpg 0
  11. first_batch/train_male/ 1002.jpg 0
  12. first_batch/train_male/ 1003.jpg 0
  13. first_batch/train_male/ 1004.jpg 0
  14. first_batch/train_male/ 1005.jpg 0
  15. first_batch/train_male/ 1006.jpg 0
  16. first_batch/train_male/ 1007.jpg 0
  17. first_batch/train_male/ 1008.jpg 0</span>

上面的标签编号:1,表示女。标签:0,表示男。

4、文件val.txt,同样这个文件也是保存图片名称及其对应的标签。

这四个文件在上面的脚本文件中,都需要调用到。制作玩后,跑一下上面的脚本文件,就ok了,跑完后,即将生成下面两个文件夹:


文件夹下面有两个对应的文件:


制作完后,要看看文件的大小,有没有问题,如果就几k,那么正常是每做好训练数据,除非你的训练图片就几张。

二、训练

1、直接训练法


 
 
  1. #!/usr/bin/env sh
  2. TOOLS=../cafferead/build/tools
  3. $TOOLS/caffe train --solver=gender_solver.prorotxt -gpu all #加入 -gpu 选项

-gpu 可以选择gpu的id号,如果是 -gpu all表示启用所有的GPU进行训练。

2、采用funing-tuning 训练法

$TOOLS/caffe train --solver=gender_solver.prorotxt -weights gender_net.caffemodel #加入-weights
 
 

加入-weights,这个功能很好用,也经常会用到,因为现在的CNN相关的文献,很多都是在已有的模型基础上,进行fine-tuning,因为我们大部分人都缺少训练数据,不像谷歌、百度这些土豪公司,有很多人专门做数据标注,对于小公司而言,往往缺少标注好的训练数据。因此我们一般使用fine-tuning的方法,在少量数据的情况下,尽可能的提高精度。我们可以使用:-weights 选项,利用已有的模型训练好的参数,作为初始值,进行继续训练。

三、调用python接口

训练完毕后,我们就可以得到caffe的训练模型了,接着我们的目标就预测,看看结果了。caffe为我们提供了方便调用的python接口函数,这些都在模块pycaffe里面。因此我们还需要知道如何使用pycaffe,进行测试,查看结果。下面是pycaffe的预测调用使用示例:


 
 
  1. # coding=utf-8
  2. import os
  3. import numpy as np
  4. from matplotlib import pyplot as plt
  5. import cv2
  6. import shutil
  7. import time
  8. #因为RGB和BGR需要调换一下才能显示
  9. def showimage(im):
  10. if im.ndim == 3:
  11. im = im[:, :, :: -1]
  12. plt.set_cmap( 'jet')
  13. plt.imshow(im)
  14. plt.show()
  15. #特征可视化显示,padval用于调整亮度
  16. def vis_square(data, padsize=1, padval=0):
  17. data -= data.min()
  18. data /= data.max()
  19. #因为我们要把某一层的特征图都显示到一个figure上,因此需要计算每个图片占用figure多少比例,以及绘制的位置
  20. n = int(np.ceil(np.sqrt(data.shape[ 0])))
  21. padding = (( 0, n ** 2 - data.shape[ 0]), ( 0, padsize), ( 0, padsize)) + (( 0, 0),) * (data.ndim - 3)
  22. data = np.pad(data, padding, mode= 'constant', constant_values=(padval, padval))
  23. # tile the filters into an image
  24. data = data.reshape((n, n) + data.shape[ 1:]).transpose(( 0, 2, 1, 3) + tuple(range( 4, data.ndim + 1)))
  25. data = data.reshape((n * data.shape[ 1], n * data.shape[ 3]) + data.shape[ 4:])
  26. showimage(data)
  27. #设置caffe源码所在的路径
  28. caffe_root = '../../../caffe/'
  29. import sys
  30. sys.path.insert( 0, caffe_root + 'python')
  31. import caffe
  32. #加载均值文件
  33. mean_filename= './imagenet_mean.binaryproto'
  34. proto_data = open(mean_filename, "rb").read()
  35. a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
  36. mean = caffe.io.blobproto_to_array(a)[ 0]
  37. #创建网络,并加载已经训练好的模型文件
  38. gender_net_pretrained= './caffenet_train_iter_1500.caffemodel'
  39. gender_net_model_file= './deploy_gender.prototxt'
  40. gender_net = caffe.Classifier(gender_net_model_file, gender_net_pretrained,mean=mean,
  41. channel_swap=( 2, 1, 0), #RGB通道与BGR
  42. raw_scale= 255, #把图片归一化到0~1之间
  43. image_dims=( 256, 256)) #设置输入图片的大小
  44. #预测分类及其可特征视化
  45. gender_list=[ 'Male', 'Female']
  46. input_image = caffe.io.load_image( '1.jpg') #读取图片
  47. prediction_gender=gender_net.predict([input_image]) #预测图片性别
  48. #打印我们训练每一层的参数形状
  49. print 'params:'
  50. for k, v in gender_net.params.items():
  51. print 'weight:'
  52. print (k, v[ 0].data.shape) #在每一层的参数blob中,caffe用vector存储了两个blob变量,用v[0]表示weight
  53. print 'b:'
  54. print (k, v[ 1].data.shape) #用v[1]表示偏置参数
  55. #conv1滤波器可视化
  56. filters = gender_net.params[ 'conv1'][ 0].data
  57. vis_square(filters.transpose( 0, 2, 3, 1))
  58. #conv2滤波器可视化
  59. '''filters = gender_net.params['conv2'][0].data
  60. vis_square(filters[:48].reshape(48**2, 5, 5))'''
  61. #特征图
  62. print 'feature maps:'
  63. for k, v in gender_net.blobs.items():
  64. print (k, v.data.shape);
  65. feat = gender_net.blobs[k].data[ 0, 0: 4] #显示名字为k的网络层,第一张图片所生成的4张feature maps
  66. vis_square(feat, padval= 1)
  67. #显示原图片,以及分类预测结果
  68. str_gender=gender_list[prediction_gender[ 0].argmax()]
  69. print str_gender
  70. plt.imshow(input_image)
  71. plt.title(str_gender)
  72. plt.show()

上面的接口,同时包含了pycaffe加载训练好的模型,进行预测及其特征可视化的调用方法。

参考:https://blog.csdn.net/hjimce/article/details/48933813

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值