Apple Trees

                                           Apple Trees

题目描述:

            这个题目讲述的是,假设存在一棵苹果树,每过十年,这些苹果树上便会长出f(x)=(\frac{50-x}{10})^{2}个苹果,x代表苹果树的岁数,这些新长出来的苹果不会停留在树上,每个苹果会掉到地上长出新的苹果树,然后这些苹果树的寿命是45岁,题目让我们求的是第n年总共有多少棵苹果树。

题目分析:

            根据苹果树的寿命,我们可以求出苹果树在10岁,20岁,30岁,40岁长出来的苹果数分别为16,9,4和1,然后根据这个关系建立递推关系式:g(n)=g(n-1)*16+g(n-2)*9+g(n-3)*4+g(n-4)*1,其中g(n)代表的是,在第10*n年新长出来苹果树的数目。

            由于n最大可达到10^{15},因此可以将上述递推关系式用矩阵表示:

            \begin{pmatrix} g(n)\\ g(n-1)\\ g(n-2)\\ g(n-3)\\ g(n-4) \end{pmatrix}=\begin{pmatrix} 16 & 9 & 4 & 1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}\begin{pmatrix} g(n-1)\\ g(n-2)\\ g(n-3)\\ g(n-4)\\ g(n-5) \end{pmatrix}

           然后利用矩阵快速幂就可以快速求出答案。

代码:

#include <iostream>
#include <cstdio>
#include <stdio.h>
#include <cstdlib>
#include <stdlib.h>
#include <cmath>
#include <math.h>
#include <algorithm>
#include <cstring>
#include <string>
#include <string.h>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <bitset>
#include <deque>
#define reg register
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
#define mod 1000000007
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define lowbit(x) (x&(-x))
using namespace std;
struct node
{
    ll matrix[5][5];
    node ()
    {
        memset(matrix,0,sizeof(matrix));
    }
};
node operator * (const node &a,const node &b)
{
    node ans;
    for (int i=0;i<5;i++)
    {
        for (int j=0;j<5;j++)
        {
            for (int k=0;k<5;k++) ans.matrix[i][j]=(ans.matrix[i][j]+a.matrix[i][k]*b.matrix[k][j]%mod)%mod;
        }
    }
    return ans;
}
node m_pow(node m,ll t)
{
    node ans;
    for (int i=0;i<5;i++) ans.matrix[i][i]=1;
    while (t)
    {
        if (t&1) ans=ans*m;
        t>>=1;
        m=m*m;
    }
    return ans;
}
int main()
{
	ll n;
	cin>>n;
	node m;
	m.matrix[0][0]=16;
	m.matrix[0][1]=9;
	m.matrix[0][2]=4;
	m.matrix[0][3]=1;
	m.matrix[1][0]=m.matrix[2][1]=m.matrix[3][2]=m.matrix[4][3]=1;
	node ans=m_pow(m,n/10);
	if (n%10<5)
    {
        cout<<(ans.matrix[0][0]+ans.matrix[1][0]+ans.matrix[2][0]+ans.matrix[3][0]+ans.matrix[4][0])%mod;
        return 0;
    }
    cout<<(ans.matrix[0][0]+ans.matrix[1][0]+ans.matrix[2][0]+ans.matrix[3][0])%mod;
	return 0;
}

 

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值