【笔记】扩展欧几里得算法(exgcd)

研习了大佬博客之后觉得这真是个可怕的东西,竟然能解决这么多问题w,看了大佬写的文章后直接不敢说话
首先,欧几里得算法
嗯,欧几里得算法(辗转相除法)我们就先略过,它的图形证明倒是挺好玩的,wzhd那天晚上证了一通【逃】
主要记了扩欧和逆元,其中逆元是用扩展欧几里得算法和费马小定理各自写了一通

扩展欧几里得算法

欧几里德算法停止的状态是: a=gcd,b=0,那这是否能给我们求解 x y 提供一种思路?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd
当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?
假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得 b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?
我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:
gcd = b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1)
对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?
这里:
x = y1
y = x1 – a/b*y1
以上就是扩展欧几里德算法的全部过程,依然递归

实现


讲的真的很详细,我们直接看一下递归实现

LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0)
    {
        x=1;//刚才描述的最终态
        y=0;
        return a;
    }
    LL ans=exgcd(b,a%b,x,y);
    LL temp=x;
    x=y;//x1表达
    y=temp-a/b*y;//y1表达
    return ans;
}

应用

扩展欧几里德算法,既可以求出最大公约数,还可以顺带求解出使得: a*x + b*y = gcd 的通解 x 和 y
扩展欧几里德有什么用处呢?
求解形如 a*x +b*y = c 的通解,但是一般没有谁会无聊到让你写出一串通解出来,都是让你在通解中选出一些特殊的解,比如一个数对于另一个数的乘法逆元

乘法逆元:(求最小正整数解)

这里写图片描述
这里,我们称 x 是 a 关于 m 的乘法逆元
求法:可以等价于这样的表达式: a*x + m*y = 1
当gcd(a , m) != 1 的时候是没有解的这也是 a*x + b*y = c 有解的充要条件: c % gcd(a , b) == 0
接着乘法逆元讲,一般,我们能够找到无数组解满足条件,但是一般是让你求解出最小的那组解。
→我们求解出来了一个特殊的解 x0 那么,我们用 x0 % m其实就得到了最小的解了。为什么?
可以这样思考:
x 的通解不是 x0 + m*t 吗?那么,也就是说, a 关于 m 的逆元是一个关于 m 同余的,那么根据最小整数原理,一定存在一个最小的正整数,它是 a 关于m 的逆元,而最小的肯定是在(0 , m)之间的,而且只有一个,这就好解释了。
可能有人注意到了,这里,我写通解的时候并不是 x0 + (m/gcd)*t ,但是想想一下就明白了,gcd = 1,所以写了跟没写是一样的,但是,由于问题的特殊性,有时候我们得到的特解 x0 是一个负数,还有的时候我们的 m 也是一个负数这怎么办?
当 m 是负数的时候,我们取 m 的绝对值就行了,当 x0 是负数的时候,他模上 m 的结果仍然是负数(在计算机计算的结果上是这样的,虽然定义的时候不是这样的),这时候,我们仍然让 x0 对abs(m) 取模,然后结果再加上abs(m) 就行了,于是,我们不难写出下面的代码求解一个数 a 对于另一个数 m 的乘法逆元

实现

下面是求逆元的核心代码,逆元也可以费马小定理来求解
扩欧版:

LL cal(LL a,LL b,LL c)
{
    LL x,y;
    LL gcd=exgcd(a,b,x,y);
    if(c%gcd!=0) return -1;
    x*=c/gcd;//转化为a*x+b*y=c的解
    b/=gcd;//约去c后原来b就变为了b/gcd;
    if(b<0) b=-b;//如果b为负数就去绝对值
    //x=(x%b+b)%b;(求出的就是最小正整数解)
    LL ans=x%b;
    if(ans<=0) ans+=b;//求最小正整数解
    return ans;//返回的就是最小正整数解
}

费马版:
费马小定理: 假如p是质数,且a,p互质,那么 a^(p-1)≡1(mod p)。
由此可得,a^(p-2) ≡ 1 / a (mod p),所以在mod p意义下,除以 a 等价于乘上 a^(p-2),即 a^(p-2) 为 a 的逆元

ll ksm(ll x,ll p)
{
    if(p == 0)
        return 1;
    if(p == 1)
        return x % mod;
    if(p == 2)
        return ((x%mod) * (x%mod))%mod;
    int temp = ksm(x,p/2) % mod;
    if(p % 2 == 1)
        return (((temp * temp) % mod) * (x%mod));
    if(p % 2 == 0)
        return (temp * temp) % mod;
}
int get(int a)
{
    return ksm(a,mod-2);
}

最后再附上一份完整的扩欧代码以供参考(以青蛙的约会为例)

#include<bits/stdc++.h>
#define MOD 1000000007
#define N 100000
using namespace std;
typedef long long LL;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    LL ans=exgcd(b,a%b,x,y);
    LL temp=x;
    x=y;
    y=temp-a/b*y;
    return ans;
}
LL cal(LL a,LL b,LL c)
{
    LL x,y;
    LL gcd=exgcd(a,b,x,y);
    if(c%gcd!=0) return -1;
    x*=c/gcd;//转化为a*x+b*y=c的解
    b/=gcd;//约去c后原来b就变为了b/gcd;
    if(b<0) b=-b;//如果b为负数就去绝对值
    //x=(x%b+b)%b;(求出的就是最小正整数解)
    LL ans=x%b;
    if(ans<=0) ans+=b;//求最小正整数解
    return ans;//返回的就是最小正整数解
}
int main()  
{  
    LL x,y,m,n,L;  
    while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L)!=EOF)  
    {  
        LL ans=cal(m-n,L,y-x);  
        if(ans==-1) printf("Impossible\n");  
        else printf("%lld\n",ans);  
    }  
    return 0;  
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值