题目
春春幼儿园举办了一年一度的“积木大赛”。今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是hi。
在搭建开始之前,没有任何积木(可以看成n块高度为 0 的积木)。接下来每次操作,小朋友们可以选择一段连续区间[l, r],然后将第第 L 块到第 R 块之间(含第 L 块和第 R 块)所有积木的高度分别增加1。
小 M 是个聪明的小朋友,她很快想出了建造大厦的最佳策略,使得建造所需的操作次数最少。但她不是一个勤于动手的孩子,所以想请你帮忙实现这个策略,并求出最少的操作次数。
输入输出格式
输入格式:
输入文件为 block.in
输入包含两行,第一行包含一个整数n,表示大厦的宽度。
第二行包含n个整数,第i个整数为hi 。
输出格式:
输出文件为 block.out
仅一行,即建造所需的最少操作数。
输入输出样例
输入样例#1: 复制
5
2 3 4 1 2
输出样例#1: 复制
5
说明
【样例解释】
其中一种可行的最佳方案,依次选择
[1,5] [1,3] [2,3] [3,3] [5,5]
【数据范围】
对于 30%的数据,有1 ≤ n ≤ 10;
对于 70%的数据,有1 ≤ n ≤ 1000;
对于 100%的数据,有1 ≤ n ≤ 100000,0 ≤ hi≤ 10000
思路:
一个比较简单易分析的贪心
只要num[i]-num[i-1]得出来正数,就升高一段高度(升高值为这一列比前一列高出的部分)所以需要 num[i]-num[i-1] 次操作(第1列比第0列高出2个高度) 才能把这一列都升高到指定高度;因为差值是正数,就说明在 i 列之前进行别升高操作时已经可以顺带着把这一行升高了(第2列相比第1列需要升高1格,因为第3格及以下格在处理第1列时已经顺带着升了),具体结合样例以及样例解释看也比较好懂
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define ri register int
const int sz = 100010;
inline void rd(int &x){
char c=getchar();bool f=0;x=0;
while(c>'9'||c<'0'){if(c=='-')f=1;c=getchar();}
while(c<='9'&&c>='0'){x=x*10+c-'0';c=getchar();}
if(f) x*=-1;
}
int n,num[sz],ans;
int main()
{
rd(n);
for(ri i=1;i<=n;i++)
{
rd(num[i]);
if(num[i-1]<num[i])
ans+=num[i]-num[i-1];
}
printf("%d",ans);
return 0;
}