网络流问题Poj_1273

Poj_1273 Drainage Ditches

初学图论的最大流问题,讲讲自己的学后的想法:

做这种题目的大概的套路就是:找一条从起点到终点的路线,(取该路线上权值最小的边,为该次查找的最小的流)然后反转该路线的流向,重复多次直至找不到为止,将每次找到的最小流加起来,就是起点到终点的最大流,也就是问题的解。

(多组输入注意初始化哦(*^__^*) )

package netflow;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.LinkedList;
import java.util.Queue;

public class Poj_1273 {
	static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
	static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));

	public static int nextInt() throws IOException {
		in.nextToken();
		return (int) in.nval;
	}

	public static String next() throws IOException {
		in.nextToken();
		return (String) in.sval;
	}

	static int map[][] = new int[205][205]; // 二维数组存放图
	static int path[] = new int[205], flow[] = new int[205]; // 前驱结点 , 当前路线上的最小流量(过该点)
	static int start, end; // 起点、终点
	static int n, m, u, v, cost;
	static Queue<Integer> q = new LinkedList<Integer>();

	public static void main(String[] args) throws IOException {
		while (in.nextToken() != StreamTokenizer.TT_EOF) {
			n = (int) in.nval;
			m = nextInt();
			Init();  // 多组输入一定要注意初始化啦、
			for (int i = 0; i < n; i++) {
				u = nextInt();
				v = nextInt();
				cost = nextInt();
				map[u][v] += cost;  // 可能一条边输入多次、
			}
			start = 1;  
			end = m;
			out.println(Edmonds_karp());
			out.flush();
		}
	}

	public static void Init() {
		for (int i = 0; i < 205; i++) {
			for (int j = 0; j < 205; j++) {
				map[i][j] = 0;
			}
		}
	}

	public static int bfs() {
		q.clear();
		for (int i = 0; i < 205; i++) {
			path[i] = -1;
		}
		path[start] = 0;  // 开始的前驱结点为0,
		flow[start] = Integer.MAX_VALUE;
		q.add(start);
		while (!q.isEmpty()) {
			int t = q.poll();
			if (t == end) {
				break;
			}
			for (int i = 1; i <= m; i++) {
				if (i != start && path[i] == -1 && map[t][i] != 0) { // 表示可以往下面走、
					flow[i] = Math.min(flow[t] , map[t][i]);  //  水流的流向 t -> i  (t之前存的最小的,和当前的流量比,取较小的)
					q.add(i);
					path[i] = t;
				}
			}
		}
		if (path[end] == -1) {
			return -1;
		}
		return flow[end];  // 返回当前路线的最大流量(支流)
	}

	public static int Edmonds_karp() {
		int max_flow = 0, step, now = 0, pre = 0;
		while ((step = bfs()) != -1) { // 找到了一个从起点到终点的路线,(支流的最大流量)
			max_flow += step;
			now = end;
			while (now != start) {
				pre = path[now]; //  回退, 对该路线的水流量反转、
				map[pre][now] -= step;
				map[now][pre] += step;
				now = pre;
			}
		}
		return max_flow;  // 返回起点到终点的最大流量、
	}
}

阅读更多
个人分类: 网络流 ACMer
上一篇并查集Poj
下一篇快速幂_逆元_求组合数
想对作者说点什么? 我来说一句

网络流问题

2012年11月27日 485KB 下载

没有更多推荐了,返回首页

关闭
关闭