python算法与数据结构(21)二叉查找树

这篇博客探讨了二叉查找树(BST)的概念,其中提到树的特性是左子节点的值小于根节点,右子节点的值大于根节点。中序遍历能够得到有序序列。此外,博主分享了关于BST的查找操作,从根节点开始按key大小决定搜索方向,并提及在尝试插入操作时遇到了代码问题,导致'.self'不是一个可迭代对象的错误,期待读者提供解决方案。
摘要由CSDN通过智能技术生成

二叉查找树,所有左子树key的值都比根小,所有右子树都比他大。
中序遍历,就是从小到大。
BST
查找操作,从根节点开始,search_key大于当前key,去右子树找,否则去左子树找。
插入操作。

class BSTNode(object):
    def __init__(self, key, value, left=None, right=None):
        self.key, self.value, self.left, self.right = key, value, left, right


class BST(object):
    def __init__(self, root=None):
        self.root = root

    @classmethod
    def build_from(cls, node_list):
        cls.size = 0
        key_to_node_dict = {}
        for node_dict in node_list:
            key = node_dict['key']
            key_to_node_dict[key] = BSTNode(key, value=key)

        for node_dict in node_list:
            key = node_dict['key']
            node = key_to_node_dict[key]
            if node_dict["is_root"]:
                root = node
            node.left = key_to_node_dict.get(node_dict['left'])
            node.right = key_to_node_dict.get(node_dict['right'])
            cls.size += 1
        return cls(root)

    """查找操作"""

    def _bst_search(self, subtree, key):
        # 辅助函数,不在外部使用
        if subtree is None:  # 没找到
            return None
        elif key < subtree.key:
            return self._bst_search(subtree.left, key)
        elif key > subtree.key:
            return self._bst_search(subtree.right, key)
        else:
            return subtree

    def get(self, key, default=None):
        node = self._bst_search(self.root, key)
        if node is None:
            return default
        else:
            return node.value

    """获取最大和最小key的节点"""

    def _bst_min_node(self, subtree):
        if subtree is None:
            return None
        elif subtree.left is None:  # 一直往左子树找
            return subtree
        else:
            return self._bst_min_node(subtree.left)

    def bst_min(self):
        node = self._bst_min_node(self.root)
        return node.value if node else None

    """插入操作
    需要一直保证左子树小,右子树比根节点大的结构,
    观察发现每次插入在叶子节点。
    """

    def _bst_insert(self, subtree, key, value):
        if subtree is None:
            subtree = BSTNode(key, value)
        elif key < subtree.key:
            subtree.left = self._bst_insert(subtree.left, key, value)
        elif key > subtree.key:
            subtree.right = self._bst_insert(subtree.right, key, value)
        return subtree

    def add(self, key, value):
        node = self._bst_search(self.root, key)
        # 先查找这个节点是否存在,有的话就返回False
        if node is not None:
            node.value = value
            return False
        else:
            self.root = self._bst_insert(self.root, key, value)
            self.size += 1
            return True

    """删除节点,较复杂
    删除叶节点,(设左或右子树节点为None)
    删除只有一个孩子的节点,(把子节点上提)
    删除有两个孩子的节点(定义逻辑前任和后继,找到后继进行替换)
    找后继:一直查找他右子树的右节点的左子树
    """

    def _bst_remove(self, subtree, key):
        if subtree is None:
            return None
        elif key < subtree.key:
            subtree.left = self._bst_remove(subtree.left, key)
            return subtree
        elif key > subtree.key:
            subtree.right = self._bst_remove(subtree.right, key)
            # return subtree
        else:  # 找到需要删除的节点
            if subtree.left is None and subtree.right is None:  # 叶子节点
                return None
            elif subtree.left is None or subtree.right is None:  # 有一个孩子
                if subtree.left is not None:
                    return subtree.left  # 返回他的孩子,让他的父亲指过去
                else:
                    return subtree.right
            else:  # 两个孩子,寻找后继节点并且替换
                successor_node = self._bst_min_node(subtree.right)
                subtree.key, subtree.value = successor_node.key, successor_node.value
                subtree.right = self._bst_remove(subtree.right, successor_node.key)
                return subtree

    def remove(self, key):
        assert key in self
        self.size -= 1
        return self._bst_remove(self.root, key)


NODE_LIST = [
    {'key': 60, 'left': 12, 'right': 90, 'is_root': True},
    {'key': 12, 'left': 4, 'right': 41, 'is_root': False},
    {'key': 4, 'left': 1, 'right': None, 'is_root': False},
    {'key': 1, 'left': None, 'right': None, 'is_root': False},
    {'key': 41, 'left': 29, 'right': None, 'is_root': False},
    {'key': 29, 'left': 23, 'right': 37, 'is_root': False},
    {'key': 23, 'left': None, 'right': None, 'is_root': False},
    {'key': 37, 'left': None, 'right': None, 'is_root': False},
    {'key': 90, 'left': 71, 'right': 100, 'is_root': False},
    {'key': 71, 'left': None, 'right': 84, 'is_root': False},
    {'key': 100, 'left': None, 'right': None, 'is_root': False},
    {'key': 84, 'left': None, 'right': None, 'is_root': False},
]


def test_bst_tree():

    bst = BST.build_from(NODE_LIST)
    for node_dict in NODE_LIST:
        key = node_dict['key']
        assert bst.get(key) == key
    assert bst.size == len(NODE_LIST)
    #
    assert bst.get(-1) is None
    assert bst.bst_min() == 1
    #
    bst.add(0, 0)
    assert bst.bst_min() == 0
    #
    bst.remove(12)
    assert bst.get(12) is None

    bst.remove(1)
    assert bst.get(1) is None

    bst.remove(29)
    assert bst.get(29) is None

我写这段代码有问题,但是我看不出来,希望读者能提供下思路。
报错self 不是一个可迭代对象。

self = <32二叉查找树.BST object at 0x0000029019EC20D0>, key = 12

    def remove(self, key):
>       assert key in self
E       TypeError: argument of type 'BST' is not iterable

32二叉查找树.py:118: TypeError
=============================================== 1 failed in 0.07s ===============================================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值