布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法

基础介绍:

给定给定区间\left [ a,b \right ],函数连续且f(a)\cdot f(b)<0,那么根据介值定理,函数必然在区间内有根。

  1. 二分法:将区间不断二分,使端点不断逼近零点。下一次迭代的区间为\left [ a,c \right ]\left [ c,b \right ],其中c=\frac{a+b}{2}
  2. 割线法(线性插值):基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。即给定两个点\left ( a,f(a) \right ),\left ( b,f(b) \right )。其割线方程为y=\frac{f(b)-f(a)}{b-a}\cdot (x-b)+f(b),那么令y=0,x的值即为下一次迭代的结果c=b-\frac{f(b)\cdot (b-a)}{f(b)-f(a)}
  3. 逆二次插值法:为割线法的进化版本。使用三个点确定一个二次函数,二次函数与横轴交错的点即为下次迭代的值。但是,其二次函数可能不会和横轴相交,因此做出一点改变,以y值作为自变量。给定三个点\left ( x_{i-2},f(x_{i-2}) \right ),(x_{i-1},f(x_{i-1})),(x_{i},f(x_{i})),则通过这三个点确定的二次函数为x=\frac{(y-f(x_{i-1}))(y-f(x_{i}))}{(f(x_{i-2})-f(x_{i-1}))(f(x_{i-2})-f(x_{i}))}\cdot x_{i-2}+\frac{(y-f(x_{i-2}))(y-f(x_{i-1}))}{(f({x_{i}})-f(x_{i-2}))(f(x_{i})-f(x_{i-1}))}\cdot x_{i}+\frac{(y-f(x_{i-2}))(y-f(x_{i}))}{(f(x_{i-1})-f(x_{i-2}))(f(x_{i-1})-f(x_{i}))}\cdot x_{i-1},令y=0,求得x_{i+1}=\frac{f(x_{i-1})f(x_{i})}{(f(x_{i-2})-f(x_{i-1}))(f(x_{i-2})-f(x_{i}))}\cdot x_{i-2}+\frac{f(x_{i-2})f(x_{i-1})}{(f({x_{i}})-f(x_{i-2}))(f(x_{i})-f(x_{i-1}))}\cdot x_{i}+\frac{f(x_{i-2})f(x_{i})}{(f(x_{i-1})-f(x_{i-2}))(f(x_{i-1})-f(x_{i}))}\cdot x_{i-1}

布伦特方法:

初始化区间(a_{0},b_{0})使得f(a_{0})\cdot f(b_{0})<0。其中b_{k}是上次迭代中的根估计值。如果\left | f(a_{0}) \right |<\left | f(b_{0}) \right |,那么赋值互换(我们认为对应函数值的绝对值较小的点更接近真正的根值)。

每次迭代包含四个点:

  1. b_{k}:为当前迭代的根估算值;
  2. a_{k}:对位点,即满足\left | f(a_{k}) \right |<\left | f(b_{k}) \right |f(a_{k})\cdot f(b_{k})<0的值。
  3. b_{k-1}:上一次迭代的根估算值,第一次迭代设置为b_{k-1}=a_{0}
  4. b_{k-2}:上上此迭代的根估算值(不用初始化,在首次迭代过程中,不会用到他来进行判断,结尾进行赋值)。

有以下四个不等式:

\left | \delta \right |<\left | b_{k}-b_{k-1} \right |  ①

\left | \delta \right |<\left | b_{k-1}-b_{k-2} \right |  ②

\left | s-b_{k} \right |<\frac{1}{2}\left | b_{k}-b_{k-1} \right |  ③

\left | s-b_{k} \right |<\frac{1}{2}\left | b_{k-1}-b_{k-2} \right | ④

上次迭代为二分法且①为假;上次迭代为二分法且③为假;上次迭代为插值法且②为假;上次迭代为插值法且④为假;以插值法计算的临时值不在\frac{3a_{k}+b{k}}{4}b_{k} 中间,以上五个条件满足一个,那么本次迭代的值采用二分法,否则采用插值法。

而插值法的选择如下:如果三点各不同,则用二次插值;否则用线性插值。

本次迭代的临时值s作为区间的一个端点,另一个端点在a_{k}b_{k}中选择,二者作为a_{k+1},b_{k+1},且满足f(a_{k+1})\cdot f(b_{k+1})<0,|f(a_{k+1})|>|f(b_{k+1})|

 

 

 

 

 

 

 

 

 

为了找到方程$f(x) = 2^x + 3^x - 4^x = 0$在区间[1, 2]内的根,可以采用数值分析中的不同算法之一。由于这个方程没有明显的解析解法,因此选择合适的数值方法非常重要。 对于这个问题,可以选择使用二分法、牛顿迭代法或是布伦特方法等。这些方法都适合用于寻找连续函数在一个给定区间的实根。下面介绍两种常用的方法: **二分法** 这是一种简单但有效的查找特定值的算法,在这种情况下是零点。该方法要求初始区间[a,b]满足f(a)*f(b)<0即ab两端的函数值异号,确保了至少存在一个根。接着不断取中间点c=(a+b)/2检查是否为根或缩小范围直到达到所需的精度为止。 **牛顿迭代法** 这种方法依赖于导数的概念并且通常收敛速度更快。从某个初值$x_0$开始,构造序列$\{x_n\}$使得它逐渐逼近真正的根$r$。更新规则如下: $$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $$ 其中$f'$表示原函数的一阶导数。需要注意的是,选取适当的起始猜测很重要以保证能够正确地接近目标根而不发散。 针对题目给出的具体情况——求解方程$f(x)=2^x + 3^x - 4^x = 0$在闭区间[1, 2]上的根,这里推荐使用更稳健可靠的布伦特方法Brent's method),因为它结合二分法的安全性二次插值以及割线法的速度优势。Python中有现成的实现比如`scipy.optimize.brentq`可以直接用来解决问题。 下面是用Python编程语言调用SciPy库中提供的布伦特方法来解决此问题的一个例子: ```python from scipy.optimize import brentq def func(x): return pow(2,x)+pow(3,x)-pow(4,x) root = brentq(func, a=1, b=2) print(f"The root of the equation in interval [1,2] is approximately {root:.10f}") ``` 这段代码将会输出方程在这个区间里的近似根,并且结果会保留十位小数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值