- 博客(5)
- 收藏
- 关注
原创 1.25
使用tf.global_variables_initializer()函数进行初始化所有变量的步骤,必须在所有变量和OP定义完成之后/这样才能保证定义的内容有效。使用with语法建立session,可以在session结束后自行关闭。 feed 注入机制,只在方法内有效。 建立session的其他方法: sess = tf.InteractiveSession() 使用会更加复杂,可以自动管理se...
2019-01-27 11:17:38 185
原创 多变量线性
多变量线性回归,其实就是多参数,用向量代替单个参数。 特征缩放 本来由于下降梯度的不同会造成向着梯度最小方向进行的时候不是向着最快的收敛方向前进,由于起始点不同会造成收敛速度差别很大,如果特征缩放之后使收敛速度和选择的初始点关系变小一些,使回归快一些。 ...
2018-11-03 11:53:50 306
原创 faster-rcnn
看了个一知半解,通过卷积,获取像素点间关联的能力,能够整合局部的信息,池化层,筛选出特征,降低计算量。其中还有涉及到anchor用于训练不同尺寸的目标,也用于筛选,IOU满足一定值的才为目标区域。至于rpn,分类,边框回归等等,这些现在看的也是云里雾里,等到有机会上手实操一下,估计会理解的深一些吧。 ...
2018-10-12 21:26:50 99
原创 bp
2018.10.12 在过去两周里,我尝试了bp的实现,采用两层网络,100个迭代100000次,总的误差缩小到0.02左右,基本可以再0-1内拟合y=x^2,在两端的时候拟合的比较差,误差能在10%左右,但在中间的部分,误差基本都在2%以内。另外在训练收敛的时候,最开始训练了几千次,所的参数非常混乱,误差虽然在减小,但是依然比较大,一百个数据的总误差的平方能在4-5。我一度怀疑自己写错了,后来经...
2018-10-12 21:11:59 231
原创 学习日记(9.17-9.21)
协助玉环现场进行软件调试,现场出现的问题比较多,主要原因是因为没有调试好就去了现场,所有的功能没有提前测试好。另外就是咱们现场的硬件环境也问题多多,内存条插槽坏了,没有提前买好内存条等问题。说明我们在之前的工作中也没有系统的规划,平时也是应付多多,这样会导致后续的快速迭代中问题多多。采用南航的模型,又没有很好的规划和测试好,调用方式在家里也只是勉强能用,到了现场硬件条件一变,直接在时序上造成了巨大...
2018-09-21 23:11:31 118
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人