来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-iii
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
示例 2:
输入: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
解题思路:看到这个题目我以为可以是将二叉树中的每一层的值相加,并将和加入到列表中,然后从列表中选择奇数或者偶数位的数求和并返回其中的较大值。但是这个思路的一个很明显的问题就是我选择其中一个层次的左子树而不选择它的右子树,选择它右子树的子节点可能会达到更大的值。仔细思考之后想到可以从底层的叶子节点开始,对每个节点考虑偷还是不偷,记录下每个节点(偷,不偷)的值,然后递归到root节点,AC代码如下:
class Solution(object): def rob(self, root): """ :type root: TreeNode :rtype: int """ a = self.cal(root) return max(a[0], a[1]) # 返回偷和不偷的最大值 def cal(self, root): if not root: # 空节点返回 return [0, 0] left = self.cal(root.left) # 左子树的值 right = self.cal(root.right) # 右子树的值 rob = left[1] + right[1] + root.val # 该节点选择偷取,那么它的左子树和右子树都不能偷 unrob = max(left[0], left[1]) + max(right[0], right[1]) # 该节点选择不偷取,那么在它的左子树和右子树中针对偷和不偷选择最大的值 return [rob, unrob] # 返回偷和不偷