Tarjan算法(连通子图)

问题描述

  某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路。
  现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。
  国王想知道,在大臣们给他的计划中,有多少个便利城市对。

输入格式

  输入的第一行包含两个整数n, m,分别表示城市和单向高速公路的数量。
  接下来m行,每行两个整数a, b,表示城市a有一条单向的高速公路连向城市b。

输出格式

  输出一行,包含一个整数,表示便利城市对的数量。

样例输入

5 5
1 2
2 3
3 4
4 2
3 5

样例输出

3

样例说明


  城市间的连接如图所示。有3个便利城市对,它们分别是(2, 3), (2, 4), (3, 4),请注意(2, 3)和(3, 2)看成同一个便利城市对。

评测用例规模与约定

  前30%的评测用例满足1 ≤ n ≤ 100, 1 ≤ m ≤ 1000;
  前60%的评测用例满足1 ≤ n ≤ 1000, 1 ≤ m ≤ 10000;
  所有评测用例满足1 ≤ n ≤ 10000, 1 ≤ m ≤ 100000。

 

题目我们看得很明白,其实是一道很简单的一道题目,直接套用Tarjan算法就可以得到答案。

关于Tarjan算法,我下面直接转载来自byvoid的文章,写得已经很好了。算了,基本上是抄的,我的这篇文章就算是转载的好了。

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

 
  1. Low(u)=Min

  2. {

  3. DFN(u),

  4. Low(v),(u,v)为树枝边,u为v的父节点

  5. DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)

  6. }

 

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下

 
  1. tarjan(u)

  2. {

  3. DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值

  4. Stack.push(u) // 将节点u压入栈中

  5. for each (u, v) in E // 枚举每一条边

  6. if (v is not visted) // 如果节点v未被访问过

  7. tarjan(v) // 继续向下找

  8. Low[u] = min(Low[u], Low[v])

  9. else if (v in S) // 如果节点v还在栈内

  10. Low[u] = min(Low[u], DFN[v])

  11. if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根

  12. repeat

  13. v = S.pop // 将v退栈,为该强连通分量中一个顶点

  14. print v

  15. until (u== v)

  16. }

 

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

附:tarjan算法的C++程序

 
  1. void tarjan(int i)

  2. {

  3. int j;

  4. DFN[i]=LOW[i]=++Dindex;

  5. instack[i]=true;

  6. Stap[++Stop]=i;

  7. for (edge *e=V[i];e;e=e->next)

  8. {

  9. j=e->t;

  10. if (!DFN[j])

  11. {

  12. tarjan(j);

  13. if (LOW[j]<LOW[i])

  14. LOW[i]=LOW[j];

  15. }

  16. else if (instack[j] && DFN[j]<LOW[i])

  17. LOW[i]=DFN[j];

  18. }

  19. if (DFN[i]==LOW[i])

  20. {

  21. Bcnt++;

  22. do

  23. {

  24. j=Stap[Stop--];

  25. instack[j]=false;

  26. Belong[j]=Bcnt;

  27. }

  28. while (j!=i);

  29. }

  30. }

  31. void solve()

  32. {

  33. int i;

  34. Stop=Bcnt=Dindex=0;

  35. memset(DFN,0,sizeof(DFN));

  36. for (i=1;i<=N;i++)

  37. if (!DFN[i])

  38. tarjan(i);

  39. }

 

好了,我们看到Tarjan算法对于我们这道题来说非常合适,这道题目你如果知道这个算法,算是送分题。附上我的代码!

 
  1. #include <iostream>

  2. #include <cstdio>

  3. #include <cstring>

  4. #include <set>

  5. #include <queue>

  6. using namespace std;

  7. const int ADJ_NUM = 50;

  8. const int SIZE = 10001;

  9. struct _graph{

  10. int adj[ADJ_NUM]; // 来记录邻接点的下标

  11. int num; // 指示邻接点的数目

  12. };

  13. _graph V[SIZE] = {0};

  14. int LOW[SIZE] = {0};

  15. int DFN[SIZE] = {0};

  16. bool instack[SIZE] = {false}; // 用来记录一个顶点是否在栈里面

  17. int Stap[SIZE] = {0};

  18. int Belong[SIZE] = {0};

  19. int Dindex, Stop, Bcnt;

  20. int answer = 0;

  21.  
  22. void tarjan(int i)

  23. {

  24. int j;

  25. int index = 0;

  26. DFN[i] = LOW[i] = ++Dindex; // 标记

  27. instack[i] = true; // 表示这个节点在栈里面

  28. Stap[++Stop] = i; // 入栈

  29. while (true) // 寻找邻节点

  30. {

  31.  
  32. j = V[i].adj[index++];

  33. if (j == 0) break;

  34. if (!DFN[j]) // 如果该点还未有入栈

  35. {

  36. tarjan(j); // 从这个节点开始访问,也就是递归

  37. if (LOW[j] < LOW[i]) // j节点访问完成之后,LOW[j]可能发生了变化,要更新LOW[i]

  38. LOW[i] = LOW[j];

  39. }

  40. else if (instack[j] && DFN[j] < LOW[i]) // 该节点已经在栈里面了

  41. LOW[i] = DFN[j];

  42. }

  43.  
  44. if (DFN[i] == LOW[i]) // DFN[i] == LOW[i]这说明有一个强连通分量

  45. {

  46. int sum = 0;

  47. Bcnt++; // 这里表示联通分量的数量加一

  48. do

  49. {

  50. j = Stap[Stop--];

  51. instack[j] = false; // 这里表示出栈

  52. Belong[j] = Bcnt;

  53. sum++;

  54. }

  55. while (j != i);

  56. if (sum != 0)

  57. answer += (sum * (sum - 1)) / 2;

  58.  
  59. }

  60. }

  61.  
  62. void solve(int N)

  63. {

  64. int i;

  65. Stop = Bcnt = Dindex = 0;

  66. memset(DFN, 0, sizeof(DFN));

  67. for (i = 1; i <= N; i++)

  68. if (!DFN[i])

  69. tarjan(i);

  70. }

  71. int main()

  72. {

  73. int n, m;

  74. int a, b;

  75. cin >> n >> m;

  76. while (m--)

  77. {

  78. cin >> a >> b;

  79. V[a].adj[V[a].num] = b; // 从 a到b有一条边

  80. V[a].num++; // 计数器加1

  81. }

  82. solve(n);

  83. cout << answer << endl;

  84. return 0;

  85. }

我要说明几点,首先是所谓的便利城市对数,对于节点数大于一的连通分量,它的对数是n*(n-1)/2,可能这道题就在这里转了一个弯。然后对于图的表示,我用的是邻接表,因为方便,记得将边的数目开大点,总之ccf内存还是不要钱的。

 

我之前让ADJ_NUM等于10,居然出错了,看来测试代码真的很大,从一个节点出来的边有可能超过10条。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值