/*归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。
算法分析
归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。
*/
#import <Foundation/Foundation.h>
void Merge(int sourceArr[],int tempArr[], int startIndex, int midIndex, int endIndex)
{
int i = startIndex, j=midIndex+1, k = startIndex;
while(i!=midIndex+1 && j!=endIndex+1)
{
if(sourceArr[i] > sourceArr[j])
tempArr[k++] = sourceArr[j++];
else
tempArr[k++] = sourceArr[i++];
}
while(i != midIndex+1)
tempArr[k++] = sourceArr[i++];
while(j != endIndex+1)
tempArr[k++] = sourceArr[j++];
for(i=startIndex; i<=endIndex; i++)
sourceArr[i] = tempArr[i];
}
//内部使用递归
void MergeSort(int sourceArr[], int tempArr[], int startIndex, int endIndex)
{
int midIndex;
if(startIndex < endIndex)
{
midIndex = startIndex + (endIndex-startIndex) / 2;//避免溢出int
MergeSort(sourceArr, tempArr, startIndex, midIndex);
MergeSort(sourceArr, tempArr, midIndex+1, endIndex);
Merge(sourceArr, tempArr, startIndex, midIndex, endIndex);
}
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
int a[7] = {4, 2, 1, 5, 7, 6, 3};
int i, b[7];
MergeSort(a, b, 0, 6);
for(i=0; i<7; i++)
printf("%d ", a[i]);
printf("\n");
}
return 0;
}
速度仅次于快速排序,为稳定排序算法,一般用于对总体无序,但是各子项相对有序的数列,应用见2011年普及复赛第3题“瑞士轮”的标程
归并排序比较占用内存,但却是一种效率高且稳定的算法。
改进归并排序在归并时先判断前段序列的最大值与后段序列最小值的关系再确定是否进行复制比较。如果前段序列的最大值小于等于后段序列最小值,则说明序列可以直接形成一段有序序列不需要再归并,反之则需要。所以在序列本身有序的情况下时间复杂度可以降至O(n)
TimSort可以说是归并排序的终极优化版本,主要思想就是检测序列中的天然有序子段(若检测到严格降序子段则翻转序列为升序子段)。在最好情况下无论升序还是降序都可以使时间复杂度降至为O(n),具有很强的自适应性。
最好时间复杂度 | 最坏时间复杂度 | 平均时间复杂度 | 空间复杂度 | 稳定性 | |
传统归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | T(n) | 稳定 |
改进归并排序 [1] | O(n) | O(nlogn) | O(nlogn) | T(n) | 稳定 |
TimSort [2] | O(n) | O(nlogn) | O(nlogn) | T(n) | 稳定 |
注:文献 [1] 是一种改进的原地归并算法,空间复杂度为O(1)。在表格里的改进归并排序只是引入其预先判断的这一步,这样便可使传统归并排序时间复杂度降至O(n)。(这段来之百度百科)