【CVPR2023】TPS详解:联合令牌剪枝与压缩以实现视觉变形器更积极的压缩

【CVPR2023】TPS详解:联合令牌剪枝与压缩以实现视觉变形器更积极的压缩

0. 引言

虽然 Vision Transformers (ViTs)近年来在各种计算机视觉任务中展示出良好的效果,但是 Transformers 的高复杂度给计算机资源带来了沉重的负担。ViTs 方面的讲解:ViT 和 基于知识蒸馏的ViT(DeiT)。为了克服 Transformers 存在的问题,众多学者提出了自己的见解。其中主要包括以下几个方面:

  1. 最简单的方法(减少Transformers模块比重,增加CNN模块)------MobileViT详解
  2. 通过减少模型输入(正确的说:通过Mask的方法减少模型输入,然后通过Encoder-Decoder重构原始图形)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

模型剧场工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值