运动想象 (MI) 迁移学习系列 (15) : 基于Wasserstein距离的改进域适应网络

论文提出了一种改进的域适应网络,结合注意力机制和方差层,利用Wasserstein距离实现源域与目标域的特征对齐,提升运动想象(EEG)分类性能。通过对抗学习策略,减少源域与目标域间的分布差异,增加对运动意象特征的判别能力,从而改善单个受试者的分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://ieeexplore.ieee.org/abstract/document/10035017
论文题目:Improved Domain Adaptation Network Based on Wasserstein Distance for Motor Imagery EEG Classification
论文代码:无

0. 引言

生成对抗网络(GAN) 的启发,本研究旨在提出一种基于Wasserstein距离的改进域适应网络,该网络利用来自多个受试者(源域)的现有标记数据来提高单个受试者(目标域)的MI分类性能。具体来说,我们提出的框架由三个组件组成,包括特征提取器、域鉴别器和分类器。特征提取器采用注意力机制和方差层来提高对从不同MI类别中提取的特征的区分。接下来,领域鉴别器采用Wasserstein矩阵来测量源域与目标域之间的距离,并通过对抗学习策略对齐源域和目标域的数据

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值